Skip to main content

Constructions of Generalized Differentiation

  • Chapter
  • First Online:
Variational Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

This chapter is devoted to the exposition of basic tools of first-order generalized differentiation in variational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. van Ackooij and R. Henrion (2017), (Sub-)gradient formulae for probability functions of random inequality systems under Gaussian distribution, SIAM/ASA J. Uncert. Qualif. 5, 63–87.

    Google Scholar 

  2. L. Adam and T. Kroupa (2017), The intermediate set and limiting superdifferential for coalitional games: between the core and the Weber set, Int. J. Game Theory 46, 891–918.

    Google Scholar 

  3. J. Alonso H. Martini and M. Spirova (2012), Minimal enclosing discs, circumcircles, and circumcenters in normed planes, part I, Comput. Geom. 45, 258–274.

    Google Scholar 

  4. H. Attouch, J. Bolte, P. Redont and A. Soubeyran (2010), Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res. 35 (2010), 438–457.

    Google Scholar 

  5. H. Attouch, J. Bolte and B. F. Svaiter (2013), Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program. 137 (2013), 91–129.

    Google Scholar 

  6. H. Attouch, G. Buttazzo and G. Michaille (2014), Variational Analysis in Sobolev and BV Spaces, 2nd edition, SIAM, Philadelphia, Pennsylvania.

    Book  Google Scholar 

  7. J.-P. Aubin (1981), Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in Mathematical Analysis and Applications, edited by L. Nachbin, pp. 159–229, Academic Press, New York.

    Google Scholar 

  8. J.-P. Aubin and H. Frankowska (1990), Set-Valued Analysis, Birkhäuser, Boston, Massachusetts.

    Google Scholar 

  9. R. Baier, E. Farkhi and V. Roshchina (2010), On computing the Mordukhovich subdifferential using directed sets in two dimensions, in Variational Analysis and Generalized Differentiation in Optimization and Control, edited by R. S. Burachik and J.-C. Yao, pp. 59–93, Springer, New York.

    Chapter  Google Scholar 

  10. R. Baier, E. Farkhi and V. Roshchina (2012), The directed and Rubinov subdifferentials of quasidifferentiable functions, I: definition and examples, Nonlinear Anal. 75, 1074–1088.

    Google Scholar 

  11. R. Baier, E. Farkhi and V. Roshchina (2012), The directed and Rubinov subdifferentials of quasidifferentiable functions, II: calculus, Nonlinear Anal. 75, 1058–1073.

    Google Scholar 

  12. M. Bardi (1989), A boundary value problem for the minimal time function, SIAM J. Control Optim. 27, 776–785.

    Google Scholar 

  13. M. Bardi and I. Capuzzo Dolcetta (1997), Optimal Control and Viscosity Solutions of Hamilton-Jacobi Equations, Birkhäuser, Boston, Massachusetts.

    Google Scholar 

  14. P. I. Barton, K. A. Khan, P. G. Stechinski and H. A. J. Watson (2017), Computationally relevant generalized derivatives: theory, evaluation and applications, Optim. Methods Softw., DOI 10.1080/10556788.2017.1374385

    Article  Google Scholar 

  15. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: theory, Set-Valued Var. Anal. 21, 431–473.

    Google Scholar 

  16. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: applications, Set-Valued Var. Anal. 21, 475–501.

    Google Scholar 

  17. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2014), Restricted normal cones and sparsity optimization with affine constraints, Found. Comput. Math. 14, 63–83.

    Google Scholar 

  18. M. S. Bazaraa, J. J. Goode and M. Z. Nashed (1974), On the cone of tangents with applications to mathematical programming, J. Optim. Theory Appl. 13, 389–426.

    Google Scholar 

  19. M. Benko and H. Gfrerer (2017), New verifiable stationarity concepts for a class of mathematical programs with disjunctive constraints, to appear in Optimization, arXiv https://arxiv.org/pdf/1611.08206.pdf.

    Google Scholar 

  20. G. C. Bento and A. Soubeyran (2015), A generalized inexact proximal point method for nonsmooth functions that satisfies Kurdyka-Łojasiewicz inequality, Set-Valued Var. Anal. 23 (2015), 501–517.

    Google Scholar 

  21. J. Bolte, A. Daniilidis and A. S. Lewis (2006), The Morse-Sard theorem for nondifferentiable subanalytic functions, J. Math. Anal. Appl. 321, 729–740.

    Google Scholar 

  22. J. Bolte, T. P. Nguyen, J. Peypouquet and B. W. Suter (2017), From error bounds to the complexity of first-order descent methods for convex functions, Math. Program. 165, 471–507.

    Google Scholar 

  23. J. Bolte, S. Sabach and M. Teboulle (2014), Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program 146, 459–494.

    Google Scholar 

  24. J. M. Borwein and S. P. Fitzpatrick (1995), Weak sequential compactness and bornological limit derivatives, J. Convex Anal. 2, 59–68.

    Google Scholar 

  25. J. M. Borwein and A. S. Lewis (2000), Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edition, Springer, New York.

    Book  Google Scholar 

  26. J. M. Borwein and D. Preiss (1987), A smooth variational principle with applications to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303, 517–527.

    Google Scholar 

  27. J. M. Borwein and H. M. Strójwas (1987), Proximal analysis and boundaries of closed sets in Banach spaces, II: applications, Canad. J. Math. 39, 428–472.

    Google Scholar 

  28. J. M. Borwein and Q. J. Zhu (1999), A survey of subdifferential calculus with applications, Nonlinear Anal. 38, 687–773.

    Google Scholar 

  29. J. M. Borwein and Q. J. Zhu (2005), Techniques of Variational Analysis, Springer, New York.

    MATH  Google Scholar 

  30. R. I. Boţ and E. R. Csetnek (2016), An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems, J. Optim. Theory Appl. 171, 600–616.

    Google Scholar 

  31. R. I. Boţ and C. Hendrich (2013), A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators, SIAM J. Optim. 23, 2541–2565.

    Google Scholar 

  32. G. Bouligand (1930), Sur les surfaces dépourvues de points hyperlimits, Ann. Soc. Polon. Math. 9, 32–41 (in French).

    Google Scholar 

  33. M. Bounkhel (2012), Regularity Concepts in Nonsmooth Analysis: Theory and Applications, Springer, New York.

    Book  Google Scholar 

  34. M. Bounkhel and L. Thibault (2002), On various notions of regularity of sets in nonsmooth analysis, Nonlinear Anal. 48, 223–246.

    Google Scholar 

  35. J. V. Burke and M. L. Overton (2001), Variational analysis of non-Lipschitz spectral functions, Math. Program. 90, 317–352.

    Google Scholar 

  36. P. Cannarsa and C. Sinestrari (2004), Semiconvex Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser, Boston, Massachusetts.

    Google Scholar 

  37. M. J. Cánovas, R. Henrion, M. A. López and J. Parra (2016), Outer limit of subdifferentials and calmness moduli in linear and nonlinear programming, J. Optim. Theory Appl. 169, 925–952.

    Google Scholar 

  38. X. Chen (2012), Smoothing methods for nonsmooth, nonconvex minimization, Math. Program. 134, 71–99.

    Google Scholar 

  39. N. H. Chieu (2009), The Fréchet and limiting subdifferentials of integral functionals on the spaces L 1(Ω, E), J. Math. Anal. Appl. 360, 704–710.

    Google Scholar 

  40. F. H. Clarke (1973), Necessary Conditions for Nonsmooth Problems in Optimal Control and the Calculus of Variations, Ph.D. dissertation, Department of Mathematics, University of Washington, Seattle, Washington.

    Google Scholar 

  41. F. H. Clarke (1975), Generalized gradients and applications, Trans. Amer. Math. Soc. 205, 247–262.

    Google Scholar 

  42. F. H. Clarke (1983), Optimization and Nonsmooth Analysis, Wiley-Interscience, New York.

    MATH  Google Scholar 

  43. F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski (1998), Nonsmooth Analysis and Control Theory, Springer, New York.

    MATH  Google Scholar 

  44. C. Clason and T. Valkonen (2017), Stability of saddle points via explicit coderivatives of pointwise subdifferentials, Set-Valued Var. Anal. 25, 69–112.

    Google Scholar 

  45. G. Colombo, V. V. Goncharov and B. S. Mordukhovich (2010), Well-posedness of minimal time problems with constant dynamics in Banach spaces, Set-Valued Var. Anal. 18, 349–972.

    Google Scholar 

  46. G. Colombo and P. R. Wolenski (2004), The subgradient formula for the minimal time functions in the case of constant dynamics in Hilbert spaces, J. Global Optim. 28, 269–282.

    Google Scholar 

  47. M. G. Crandall, H. Ishii and P.-L. Lions (1992), User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. 27, 1–67.

    Google Scholar 

  48. M. G. Crandall and P.-L. Lions (1983), Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, 1–42.

    Google Scholar 

  49. C. Davis and W. Hare (2013), Exploiting known structures to approximate normal cones, Math. Oper. Res. 38, 665–681.

    Google Scholar 

  50. S. Dolecki and G. H. Greco (2007), Towards historical roots of necessary conditions of optimality: Regula of Peano, Control Cybern. 36, 491–518.

    Google Scholar 

  51. D. Drusvyatskiy, A. D. Ioffe and A. S. Lewis (2015), Transversality and alternating projections for nonconvex sets, Found. Comput. Math. 15, 1637–1651.

    Google Scholar 

  52. D. Drusvyatskiy and A. S. Lewis (2016), Error bounds, quadratic growth, and linear convergence of proximal methods, http:arXiv:1602.06661.

    Google Scholar 

  53. D. Drusvyatskiy and C. Paquette (2018), Variational analysis of spectral functions simplified, to appear in J. Convex Anal. 25, No. 1.

    Google Scholar 

  54. A. Y. Dubovitskii and A. A. Milyutin (1965), Extremum problems in the presence of restrictions, USSR Comput. Maths. Math. Phys. 5, 1–80.

    Google Scholar 

  55. I. Ekeland (1974), On the variational principle, J. Math. Anal. Appl. 47, 324–353.

    Google Scholar 

  56. I. Ekeland (1979), Nonconvex minimization problems, Bull. Amer. Math. Soc. 1, 432–467.

    Google Scholar 

  57. M. Fabian (1989), Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolina, Ser. Math. Phys. 30, 51–56.

    Google Scholar 

  58. M. Fabian et al. (2011), Functional Analysis and Infinite-Dimensional Geometry, 2nd edition, Springer, New York.

    Google Scholar 

  59. M. Fabian and B. S. Mordukhovich (1998), Smooth variational principles and characterizations of Asplund spaces, Set-Valued Anal. 6, 381–406.

    Google Scholar 

  60. W. Geremew, B. S. Mordukhovich and N. M. Nam (2009), Coderivative calculus and metric regularity for constraint and variational systems, Nonlinear Anal. 70, 529–552.

    Google Scholar 

  61. H. Gfrerer (2013), On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs, SIAM J. Optim. 23, 632–665.

    Google Scholar 

  62. H. Gfrerer (2013), On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs, Set-Valued Var. Anal. 21, 151–176.

    Google Scholar 

  63. H. Gfrerer and J. V. Outrata (2016), On Lipschitzian properties of implicit multifunctions, SIAM J. Optim. 26, 2160–2189.

    Google Scholar 

  64. H. Gfrerer and J. V. Outrata (2017), On the Aubin property of a class of parameterized variational systems, Math. Meth. Oper. Res., DOI 10.1007/s00186-017-0596-y.

    Article  MathSciNet  MATH  Google Scholar 

  65. I. Ginchev and B. S. Mordukhovich (2011), On directionally dependent subdifferentials, C. R. Acad. Bulg. Sci. 64, 497–508.

    Google Scholar 

  66. I. Ginchev and B. S. Mordukhovich (2012), Directional subdifferentials and optimality conditions, Positivity 16, 707–737.

    Google Scholar 

  67. E. Giner (2017), Clarke and limiting subdifferentials of integral functionals, J. Convex Anal. 24, No. 3.

    Google Scholar 

  68. I. V. Girsanov (1972), Lectures on Mathematical Theory of Extremum Problems, Springer, Berlin.

    Book  Google Scholar 

  69. A. Greenbaum, A. S. Lewis and M. L. Overton (2017), Variational analysis of the Crouzeix ratio, Math. Program. 164, 229–243.

    Google Scholar 

  70. A. Griewank (2013), On stable piecewise linearization and generalized algorithmic differentiation, Optim. Methods Softw. 28 (2013), 1139–1178.

    Google Scholar 

  71. A. Griewank and A. Walther (2008), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edition, SIAM, Philadelphia, Pennsylvania.

    Book  Google Scholar 

  72. A. Griewank and A. Walther (2016), First- and second-order optimality conditions for piecewise smooth objective functions, Optim. Methods Softw. 31, 904–930.

    Google Scholar 

  73. S. Grundel and M. L. Overton (2014), Variational analysis of the spectral abscissa at a matrix with a nongeneric multiple eigenvalue, Set-Valued Var. Anal. 22, 19–43.

    Google Scholar 

  74. R. Guesnerie (1975), Pareto optimality in non-convex economies, Econometrica 43, 1–29.

    Google Scholar 

  75. M. Gürbüzbalaban and M. L. Overton (2012), On Nesterov’s nonsmooth Chebyshev-Rosenbrock functions, Nonlinear Anal. 75, 1282–1289.

    Google Scholar 

  76. A. Hantoute, R. Henrion and P. Pérez-Aros (2017), Subdifferential characterization of continuous probability functions under Gaussian distribution, to appear in Math. Program., arXiv:1705.10160.

    Google Scholar 

  77. W. Hare and C. Sagastizábal (2005), Computing proximal points of nonconvex functions, Math. Program. 116 (2009), 221–258.

    Google Scholar 

  78. Y. He and K. F. Ng (2006), Subdifferentials of a minimal time function in Banach spaces, J. Math. Anal. Appl. 321, 896–910.

    Google Scholar 

  79. R. Hesse and D. R. Luke (2013), Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems, SIAM J. Optim. 23, 2397–2419.

    Google Scholar 

  80. M. Hintermüller, B. S. Mordukhovich and T. Surowiec (2014), Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints, Math. Program. 146, 555–582.

    Google Scholar 

  81. J.-B. Hiriart-Urruty and C. Lemaréchal (1993), Convex Analysis and Minimization Algorithms, published in two volumes, Springer, Berlin.

    MATH  Google Scholar 

  82. A. D. Ioffe (1981), Calculus of Dini subdifferentials, CEREMADE Publication 8110, Universiteé de Paris IX “Dauphine”.

    Google Scholar 

  83. A. D. Ioffe (1981), Approximate subdifferentials of nonconvex functions, CEREMADE Publication 8120, Universiteé de Paris IX “Dauphine.”

    Google Scholar 

  84. A. D. Ioffe (1984), Approximate subdifferentials and applications, I: the finite dimensional theory, Trans. Amer. Math. Soc. 281, 389–415.

    Google Scholar 

  85. A. D. Ioffe (1989), Approximate subdifferentials and applications, III: the metric theory, Mathematika 36, 1–38.

    Google Scholar 

  86. A. D. Ioffe (1990), Proximal analysis and approximate subdifferentials, J. London Math. Soc. 41, 175–192.

    Google Scholar 

  87. A. D. Ioffe (2017), Variational Analysis of Regular Mappings: Theory and Applications (2017), Springer, Cham, Switzerland.

    Book  Google Scholar 

  88. A. D. Ioffe and J. V. Outrata (2008), On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Anal. 16, 199–228.

    Google Scholar 

  89. G. E. Ivanov and L. Thibault (2017), Infimal convolution and optimal time control problem: Fréchet and proximal subdifferentials, Set-Valued Var. Anal., DOI 10.1007/s11228-016-0398-z.

    Article  MATH  Google Scholar 

  90. G. E. Ivanov and L. Thibault (2017), Infimal convolution and optimal time control problem: limiting subdifferential, Set-Valued Var. Anal. 25, 517–542.

    Google Scholar 

  91. A. Jourani and L. Thibault (2011), Noncoincidence of approximate and limiting subdifferentials of integral functionals, SIAM J. Control Optim. 49, 1435–1453.

    Google Scholar 

  92. K. A. Khan and P. I. Barton (2015), A vector forward mode of automatic differentiation for generalized derivative evaluation, Optim. Methods Softw. 30, 1185–1212.

    Google Scholar 

  93. M. A. Khan (1999), The Mordukhovich normal cone and the foundations of welfare economics, J. Public Econ. Theory 1, 309–338.

    Google Scholar 

  94. P. D. Khanh, J.-C. Yao and N. D. Yen (2017), The Mordukhovich subdifferentials and directions of descent, J. Optim. Theory Appl. 172, 518–534.

    Google Scholar 

  95. M. Knossalla (2018), Minimization of marginal functions in mathematical programming based on continuous outer subdifferentials, Optimization, DOI 10.1080/02331934.2018.1426579.

    Article  MathSciNet  MATH  Google Scholar 

  96. A. Y. Kruger (1981), Generalized Differentials of Nonsmooth Functions and Necessary Conditions for an Extremum, Ph.D. dissertation, Department of Applied Mathematics, Belarus State University, Minsk, Belarus (in Russian).

    Google Scholar 

  97. A. Y. Kruger (1981), Epsilon-semidifferentials and epsilon-normal elements, Depon. VINITI #1331-81, Moscow (in Russian).

    Google Scholar 

  98. A. Y. Kruger (1981), Generalized differentials of nonsmooth functions, Depon. VINITI #1332-81, Moscow (in Russian).

    Google Scholar 

  99. A. Y. Kruger (1985), Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Siberian Math. J. 26, 370–379.

    Google Scholar 

  100. A. Y. Kruger and B. S. Mordukhovich (1978), Minimization of nonsmooth functionals in optimal control problems, Eng. Cybernetics 16, 126–133.

    Google Scholar 

  101. A. Y. Kruger and B. S. Mordukhovich (1980), Generalized normals and derivatives, and necessary optimality conditions in nondifferential programming, I&II, Depon. VINITI: I# 408-80, II# 494-80, Moscow (in Russian).

    Google Scholar 

  102. A. Y. Kruger and B. S. Mordukhovich (1980), Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24, 684–687 (in Russian).

    Google Scholar 

  103. C. Lemaréchal, F. Oustry and C. Sagastizábal (2000), The \(\mathcal{U}\)-Lagrangian of a convex function, Trans. Amer. Math. Soc. 352, 711–729.

    Google Scholar 

  104. A. S. Lewis (2003), The mathematics of eigenvalue optimization, Math. Program. 97, 155–176.

    Google Scholar 

  105. A. S. Lewis, D. R. Luke, and J. Malick (2009), Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math. 9, 485–513.

    Google Scholar 

  106. A. S. Lewis and S. J. Wright (2011), Identifying activity, SIAM J. Optim. 21, 597–614.

    Google Scholar 

  107. G. Li and B. S. Mordukhovich (2012), Hölder metric subregularity with applications to proximal point method, SIAM J. Optim. 22, 1655–1684.

    Google Scholar 

  108. G. Li, B. S. Mordukhovich, T. T. A. Nghia and T. S. Pham (2017), Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates, Math. Program., DOI 10.1007/s10107-016-1014-6.

    Article  MATH  Google Scholar 

  109. G. Li, B. S. Mordukhovich and T. S. Pham (2015), New fractional error bounds for polynomial systems with applications to Höderian stability in optimization and spectral theory of tensors, Math. Program. 153, 333–362.

    Google Scholar 

  110. P. D. Loewen (1988), The proximal subgradient formula in Banach spaces, Canad. Math. Bull. 31, 353–361.

    Google Scholar 

  111. P. D. Loewen (1994), A mean value theorem for Fréchet subgradients, Nonlinear Anal. 23, 1365–1381.

    Google Scholar 

  112. D. R. Luke (2012), Local linear convergence of approximate projections onto regularized sets, Nonlinear Anal. 75, 1531–1546.

    Google Scholar 

  113. H. Martini, K. J. Swanepoel and G. Weiss (2002), The Fermat-Torricelli problem in normed planes and spaces, J. Optim. Theory Appl. 115, 283–314.

    Google Scholar 

  114. P. Mehlitz and G. Wachsmuth (2017), The limiting normal cone to pointwise defined sets in Lebesgue spaces, Set-Valued Var. Anal., DOI 10.1007/s11228-016-0393-4.

    Article  Google Scholar 

  115. P. Michel and J.-P. Penot (1992), A generalized derivative for calm and stable functions, Differ. Integr. Equ. 5, 433–454.

    Google Scholar 

  116. B. S. Mordukhovich (1976), Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40, 960–969.

    Google Scholar 

  117. B. S. Mordukhovich (1977), Approximation and maximum principle for nonsmooth problems of optimal control, Russian Math. Surveys 196, 263–264.

    Google Scholar 

  118. B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions for general classes of extremal problems, Soviet Math. Dokl. 22, 526–530.

    Google Scholar 

  119. B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).

    MATH  Google Scholar 

  120. B. S. Mordukhovich (1997), Coderivatives of set-valued mappings: calculus and applications, Nonlinear Anal. 30, 3059–3070.

    Google Scholar 

  121. B. S. Mordukhovich (2004), Necessary conditions in nonsmooth minimization via lower and upper subgradients, Set-Valued Anal. 12, 163–193.

    Google Scholar 

  122. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin.

    Google Scholar 

  123. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin.

    Google Scholar 

  124. B. S. Mordukhovich and A. Y. Kruger (1976), Necessary optimality conditions for a terminal control problem with nonfunctional constraints, Dokl. Akad. Nauk BSSR 20, 1064–1067 (in Russian).

    Google Scholar 

  125. B. S. Mordukhovich and L. Mou (2009), Necessary conditions for nonsmooth optimization problems with operator constraints in metric spaces, J. Convex Anal. 16, 913–938.

    Google Scholar 

  126. B. S. Mordukhovich and N. M. Nam (2005), Subgradients of distance functions with some applications, Math. Program. 104 (2005), 635–668.

    Google Scholar 

  127. B. S. Mordukhovich and N. M. Nam (2005), Subgradients of distance functions at out-of-state points, Taiwanese J. Math. 10 (2006), 299–326.

    Google Scholar 

  128. B. S. Mordukhovich and N. M. Nam (2010), Limiting subgradients of minimal time functions in Banach spaces, J. Global Optim. 46, 615–633.

    Google Scholar 

  129. B. S. Mordukhovich and N. M. Nam (2011), Subgradients of minimal time functions under minimal requirements, J. Convex Anal. 18, 915–947.

    Google Scholar 

  130. B. S. Mordukhovich and N. M. Nam (2011), Applications of variational analysis to a generalized Fermat-Torricelli problem, J. Optim. Theory Appl. 148, 431–454.

    Google Scholar 

  131. B. S. Mordukhovich and N. M. Nam (2014), An Easy Path to Convex Analysis and Applications, Morgan & Claypool Publishers, San Rafael, California.

    MATH  Google Scholar 

  132. B. M. Mordukhovich, N. M. Nam and J. Salinas, Jr. (2012), Solving a generalized Heron problem by means of convex analysis, Amer. Math. Monthly 119, 87–99.

    Google Scholar 

  133. B. M. Mordukhovich, N. M. Nam and J. Salinas, Jr. (2012), Applications of variational analysis to a generalized Heron problem, Applic. Anal. 91, 1915–1942

    Google Scholar 

  134. B. M. Mordukhovich, N. M. Nam and M. C. Villalobos (2012), The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of solutions, Optim. Lett. 154, 768–791.

    Google Scholar 

  135. B. S. Mordukhovich, J. Pẽna and V. Rochshina (2010), Applying metric regularity to compute a condition measure of smooth algorithms for matrix games, SIAM J. Optim. 20, 3490–3511.

    Google Scholar 

  136. B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, I: basic theory, Math. Program. 136, 31–63.

    Google Scholar 

  137. B. S. Mordukhovich and N. Sagara (2018), Subdifferentiation of noncovex integral functionals on Banach spaces with applications to stochastic dynamic programming, J. Convex Anal. 25, No. 2.

    Google Scholar 

  138. B. S. Mordukhovich and Y. Shao (1996), Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348, 1235–1280.

    Google Scholar 

  139. B. S. Mordukhovich and Y. Shao (1998), Mixed coderivatives of set-valued mappings in variational analysis, J. Appl. Anal. 4, 269–294.

    Google Scholar 

  140. B. S. Mordukhovich and B. Wang (2003), Differentiability and regularity of Lipschitzian mappings, Proc. Amer. Math. Soc. 131, 389–399.

    Google Scholar 

  141. J.-J. Moreau (1963), Fonctionelles sous-différentiables, C. R. Acad. Sci. Paris 257, 4117–4119 (in French).

    Google Scholar 

  142. N. M. Nam and D. V. Cuong (2015), Generalized differentiation and characterizations for differentiability of infimal convolutions, Set-Valued Var. Anal. 23, 333–353.

    Google Scholar 

  143. N. M. Nam and N. D. Hoang (2013), A generalized Sylvester problem and a generalized Fermat-Torricelli problem, J. Convex Anal. 20, 669–687.

    Google Scholar 

  144. N. M. Nam and C. Zălinescu (2013), Variational analysis of directional minimal time functions and applications to location problems, Set-Valued Var. Anal. 21, 405–430.

    Google Scholar 

  145. Y. Nesterov (2005), Lexicographic differentiation of nonsmooth functions, Math. Program. 104, 669–700.

    Google Scholar 

  146. L. W. Neustadt (1976), Optimization: A Theory of Necessary Conditions, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  147. H. V. Ngai, D. T. Luc and M. Théra (2000), Approximate convex functions, J. Nonlinear Convex Anal. 1, 155–176.

    Google Scholar 

  148. S. Nickel, J. Puerto and A. M. Rodriguez-Chia (2003), An approach to location models involving sets as existing facilities, Math. Oper. Res. 28, 693–715.

    Google Scholar 

  149. F. Nielsen and R. Nock (2009), Approximating smallest enclosing balls with applications to machine learning, Int. J. Comput. Geom. Appl. 19, 389–414.

    Google Scholar 

  150. J.-P. Penot (1974), Sous-diférentiels de fonctions numériques non convexes, C. R. Acad. Sci. Paris 278, 1553–1555.

    Google Scholar 

  151. J.-P. Penot (2001), Image space approach and subdifferentials of integral functionals, Optimization 60, 69–87.

    Google Scholar 

  152. J.-P. Penot (2013), Calculus without Derivatives, Springer, New York.

    Book  Google Scholar 

  153. R. R. Phelps (1993), Convex Functions, Monotone Operators and Differentiability, 2nd edition, Springer, Berlin.

    MATH  Google Scholar 

  154. T. Pock and S. Sabach (2016), Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems, SIAM J. Imaging Sci. 9, 1756–1787.

    Google Scholar 

  155. H. Phan (2016), Linear convergence of the Douglas-Rachford method for two closed sets, Optimization 65, 369–385.

    Google Scholar 

  156. D. Preiss (1990), Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91, 312–345.

    Google Scholar 

  157. B. N. Pshenichnyi (1976), Necessary conditions for an extremum for differential inclusions, Kibernetika 12, 60–73 (in Russian).

    Google Scholar 

  158. B. N. Pshenichnyi (1980), Convex Analysis and Extremal Problems, Nauka, Moscow (in Russian).

    MATH  Google Scholar 

  159. M. L. Radulescu and F. H. Clarke (1997), Geometric approximations of proximal normals, J. Convex Anal. 4, 373–379.

    Google Scholar 

  160. R. T. Rockafellar (1970), Convex Analysis, Princeton University Press, Princeton, New Jersey.

    Book  Google Scholar 

  161. R. T. Rockafellar (1979), Directional Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39, 331–355.

    Google Scholar 

  162. R. T. Rockafellar (1981), The Theory of Subgradients and Its Applications to Problems of Optimization: Convex and Nonconvex Functions, Helderman Verlag, Berlin.

    MATH  Google Scholar 

  163. R. T. Rockafellar (1981), Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6, 424–436.

    Google Scholar 

  164. R. T. Rockafellar (1985), Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9, 665–698.

    Google Scholar 

  165. R. T. Rockafellar (1985), Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré: Analyse Non Linéaire 2, 167–184.

    Google Scholar 

  166. R. T. Rockafellar and R. J-B. Wets (1998), Variational Analysis, Springer, Berlin.

    Book  Google Scholar 

  167. V. Roshchina (2007), Relationships between upper exhausters and the basic subdifferential in variational analysis, J. Math. Anal. Appl. 334, 261–272.

    Google Scholar 

  168. V. Roshchina (2010), Mordukhovich subdifferential of pointwise minimum of approximate convex functions, Optim. Methods Softw. 25, 129–141.

    Google Scholar 

  169. A. Ruszczynski (2006), Nonlinear Optimization, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  170. N. Sagara (2015), Cores and Weber sets for fuzzy extensions of cooperative games, Fuzzy Sets Syst. 272, 102–114.

    Google Scholar 

  171. W. Schirotzek (2007), Nonsmooth Analysis, Springer, Berlin.

    Book  Google Scholar 

  172. F. Severi (1930), Su alcune questioni di topologia infinitesimale, Ann. Soc. Polon. Math. 9, 97–108 (in Italian).

    Google Scholar 

  173. L. Thibault (1980), Subdifferentials of compactly Lipschitzian vector functions, Ann. Mat. Pura Appl. 125, 157–192.

    Google Scholar 

  174. L. Thibault (1991), On subdifferentials of optimal value functions, SIAM J. Control Optim. 29, 1019–1036.

    Google Scholar 

  175. L. Thibault (1997), On compactly Lipschitzian mappings, in Recent Advances in Optimization, edited by P. Gritzmann et al., Lecture Notes Econ. Math. Syst. 456, pp. 356–364, Springer, Berlin.

    Google Scholar 

  176. L. Thibault and D. Zagrodny (1995), Integration of subdifferentials of lower semicontinuous functions, J. Math. Anal. Appl. 189, 22–58.

    Google Scholar 

  177. V. D. Thinh and T. D. Chuong (2017), Directionally generalized differentiation for multifunctions and applications to set-valued programming problems, Ann. Oper. Res., DOI 10.1007/s10479-017-2400-z.

    Article  Google Scholar 

  178. J. S. Treiman (1999), Lagrange multipliers for nonconvex generalized gradients with equality, inequality, and set constraints, SIAM J. Control Optim. 37, 1313–1329.

    Google Scholar 

  179. J. S. Treiman (2002), The linear generalized gradient in infinite dimensions, Nonlinear Anal. 48, 427–443.

    Google Scholar 

  180. J. Warga (1976), Derivate containers, inverse functions, and controllability, in Calculus of Variations and Control Theory, edited by D. L. Russel, pp. 13–46, Academic Press, New York.

    Google Scholar 

  181. A. J. Zaslavski (2010), Exact penalty in constrained optimization and the Mordukhovich basic subdifferential, in Variational Analysis and Generalized Differentiation in Optimization and Control, edited by R. S. Burachik and J.-C. Yao, pp. 223–232, Springer, New York.

    Chapter  Google Scholar 

  182. A. J. Zaslavski (2010), Optimization on Metric and Normed Spaces, Springer, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mordukhovich, B.S. (2018). Constructions of Generalized Differentiation. In: Variational Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-92775-6_1

Download citation

Publish with us

Policies and ethics