Skip to main content

Blind Image Deblurring via Salient Structure Detection and Sparse Representation

  • Conference paper
  • First Online:
  • 1165 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10799))

Abstract

Blind image deblurring algorithms have been improving steadily in the past years. However, most state-of-the-art algorithms still cannot perform perfectly in challenging cases, e.g., when the blurred image contains complex tiny structures or the blur kernel is large. This paper presents a new algorithm that combines salient image structure detection and sparse representation for blind image deblurring. Salient structures provide reliable edge information from the blurred image, while sparse representation provides data-authentic priors for both the blur kernel and the latent image. When estimating the kernel, the salient structures are extracted from an interim latent image solved by combining the predicted structure and spatial and sparsity priors, which help preserve more sharp edges than previous deconvolution methods do. We also aim at removing noise and preserving continuity in the kernel, thus obtaining a high-quality blur kernel. Then a sparse representation based \(\ell _1\)-norm deconvolution model is proposed for suppressing noise robustly and solving for a high-quality latent image. Extensive experiments testify to the effectiveness of our method on various kinds of challenging examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Image details is referred to as \(I - I_s\).

  2. 2.

    We replace \(I_s\) with \(I - I_s\) in (7), then result shown in (a) is obtained in the same way as (d).

  3. 3.

    In this paper, we regard noise and saturation pixels as outliers, and do not take any special strategy to deal with them. Thus, result of [33] performs better. However, our result is comparable with that of [33].

  4. 4.

    The Matlab codes are available on authors’ webpages.

  5. 5.

    We only present the deblurred results with the error ratio (smaller than 3). Otherwise, We find that the results will be unreliable.

References

  1. Chen, W.G., Nandhakumar, N., Martin, W.N.: Image motion estimation from motion smear-a new computational model. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 234–778 (1996)

    Google Scholar 

  2. Rav-Acha, A., Peleg, S.: Two motion-blurred images are better than one. Pattern Recogn. Lett. 26, 311–317 (2005)

    Article  Google Scholar 

  3. Chen, J., Yuan, L., Tang, C.K., Quan, L.: Robust dual motion deblurring. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  4. Li, W., Zhang, J., Dai, Q.: Exploring aligned complementary image pair for blind motion deblurring. In: CVPR, pp. 273–280 (2011)

    Google Scholar 

  5. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Trans. Graph. 26(3), 1–10 (2007)

    Article  Google Scholar 

  6. Zhuo, S., Guo, D., Sim, T.: Robust flash deblurring. In: CVPR, pp. 2440–2447 (2010)

    Google Scholar 

  7. Chan, T., Wong, C.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  8. You, Y.L., Kaveh, M.: Blind image restoration by anisotropic regularization. IEEE Trans. Image Process. 8(3), 396–407 (1999)

    Article  Google Scholar 

  9. Yitzhaky, Y., Mor, I., Lantzman, A., Kopeika, N.S.: Direct method for restoration of motion-blurred images. J. Opt. Soc. Am. A 15(6), 1512–1519 (1998)

    Article  Google Scholar 

  10. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

    Article  Google Scholar 

  11. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 1–8 (2009). (SIGGRAPH Asia)

    Article  Google Scholar 

  12. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  13. Jia, J.: Single image motion deblurring using transparency. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  14. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR, pp. 1964–1971 (2009)

    Google Scholar 

  15. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR, pp. 2657–2664 (2011)

    Google Scholar 

  16. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  17. Cho, T.S., Paris, S., Horn, B.K.P., Freeman, W.T.: Blur kernel estimation using the Radon transform. In: CVPR, pp. 241–248 (2011)

    Google Scholar 

  18. Pan, J., Liu, R., Su, Z., Gu, X.: Kernel estimation from salient structure for robust motion deblurring. Signal Process. Image Commun. 28(9), 1156–1170 (2013)

    Article  Google Scholar 

  19. Lou, Y., Bertozzi, A.L., Soatto, S.: Direct sparse deblurring. J. Math. Imag. Vis. 39(1), 1–12 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hu, Z., Huang, J.B., Yang, M.H.: Single image deblurring with adaptive dictionary learning. In: ICIP, pp. 1169–1172 (2010)

    Google Scholar 

  21. Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Sparse representation based blind image deblurring. In: ICME, pp. 1–6 (2011)

    Google Scholar 

  22. Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Close the loop: joint blind image restoration and recognition with sparse representation prior. In: ICCV, pp. 770–777 (2011)

    Google Scholar 

  23. Cai, J.F., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: CVPR, pp. 104–111 (2009)

    Google Scholar 

  24. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  25. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  26. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  27. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell ^1\)-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59, 797–829 (2004)

    Article  MathSciNet  Google Scholar 

  28. Turek, J., Yavneh, I., Protter, M., Elad, M.: On MMSE and MAP denoising under sparse representation modeling over a unitary dictionary. IEEE Trans. Signal Process. 59(8), 3526–3535 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zuo, W., Lin, Z.: A generalized accelerated proximal gradient approach for total variation-based image restoration. IEEE Trans. Image Process. 20(10), 2748–2759 (2011)

    Article  MathSciNet  Google Scholar 

  30. Krishnan, D., Fergus, R.: Fast image deconvolution using Hyper-Laplacian priors. In: NIPS, pp. 1033–1041 (2009)

    Google Scholar 

  31. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)

    Article  Google Scholar 

  32. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(l_0\) gradient minimization. ACM Trans. Graph. 30, Article No. 174 (2011). (SIGGRAPH Asia)

    Google Scholar 

  33. Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: ICCV, pp. 495–502 (2011)

    Google Scholar 

  34. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR, pp. 233–240 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y., Pan, J., Su, Z. (2018). Blind Image Deblurring via Salient Structure Detection and Sparse Representation. In: Satoh, S. (eds) Image and Video Technology. PSIVT 2017. Lecture Notes in Computer Science(), vol 10799. Springer, Cham. https://doi.org/10.1007/978-3-319-92753-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92753-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92752-7

  • Online ISBN: 978-3-319-92753-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics