Advertisement

Friction Stir Welding and Friction Stir Spot Welding of Similar Aluminium and Copper Alloys

  • Mukuna Patrick Mubiayi
  • Esther Titilayo Akinlabi
  • Mamookho Elizabeth Makhatha
Chapter
Part of the Structural Integrity book series (STIN, volume 6)

Abstract

Friction stir welding (FSW) and friction stir spot welding are solid state joining processes employed for the joining of similar and dissimilar materials. The processes are used by many researchers; because these processes produce sound welds; and they do not have common welding problems, such as solidification and liquefaction cracking related to the fusion welding methods. FSW and FSSW of similar aluminium and copper gained ground in the development of solid state joining processes. It may be observed that for FSW and FSSW of similar copper, many research studies were carried out using pure copper as the parent material. Whereas, for similar aluminium, almost the entire aluminium alloy series is utilized. Good quality joints with enhanced properties have been produced; and more studies are required, in order to fully optimize these processes. This could be beneficial in curbing global warming; since FSW and FSSW are both labelled as being environmentally friendly joining processes. In this chapter, FSW and FSSW research studies on similar aluminium and copper are briefly summarized in terms of the process parameters, the microstructural evolution and the mechanical properties.

Keywords

Aluminium Copper Microhardness Microstructure Tensile strength 

References

  1. 1.
    Shukla AK, Chelladurai H, Tiwari S (2017) Effect of pre-heat time on force during friction stir welding of aluminium 1050 alloy. Mater Today: Proc 4(2):3618–3626CrossRefGoogle Scholar
  2. 2.
    Sajed M (2016) Parametric study of two-stage refilled friction stir spot welding. J Manuf Process 24:307–317CrossRefGoogle Scholar
  3. 3.
    Ma S, Zhao Y, Zou J, Yan K, Liu C (2017) The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219. Opt Laser TechnolCrossRefGoogle Scholar
  4. 4.
    Li Z, Yue Y, Ji S, Peng C, Wang L (2016) Optimal design of thread geometry and its performance in friction stir spot welding. Mater Des 94:368–376CrossRefGoogle Scholar
  5. 5.
    Tutar M, Aydin H, Yuce C, Yavuz N, Bayram A (2014) The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array. Mater Des 63:789–797CrossRefGoogle Scholar
  6. 6.
    Shanavas S, Dhas JER (2017) Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology. Trans Nonferrous Metals Soc China 27(11):2334–2344CrossRefGoogle Scholar
  7. 7.
    Rana PK, Narayanan RG, Kailas SV (2018) Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J Mater Process Technol 252:511–523CrossRefGoogle Scholar
  8. 8.
    Costa MI, Leitão C, Rodrigues DM (2017) Influence of post-welding heat-treatment on the monotonic and fatigue strength of 6082-T6 friction stir lap welds. J Mater Process Technol 250:289–296CrossRefGoogle Scholar
  9. 9.
    Zeng KW, Su ZM, Luo SM, Lin PC, Dong MT, Tang T, Huang B (2013) Removing approach for flashes of friction stir spot welds. J Mater Process Technol 213(10):1725–1733CrossRefGoogle Scholar
  10. 10.
    Sun T, Roy MJ, Strong D, Withers PJ, Prangnell PB (2017) Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. J Mater Process Technol 242:92–100CrossRefGoogle Scholar
  11. 11.
    Shen Z, Yang X, Zhang Z, Cui L, Li T (2013) Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des 44:476–486CrossRefGoogle Scholar
  12. 12.
    Sanusi KO, Akinlabi ET, Muzenda E, Akinlabi SA (2015) Enhancement of corrosion resistance behaviour of frictional stir spot welding of copper. Mater Today: Proc 2(4–5):1157–1165CrossRefGoogle Scholar
  13. 13.
    Sun YF, Fujii H (2010) Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A 527(26):6879–6886CrossRefGoogle Scholar
  14. 14.
    Teimurnezhad J, Pashazadeh H, Masumi A (2016) Effect of shoulder plunge depth on the weld morphology, macrograph and microstructure of copper FSW joints. J Manuf Process 22:254–259CrossRefGoogle Scholar
  15. 15.
    Srirangarajalu N, Reddy GM, Rao SK, Rajadurai A (2012) Microstructure and mechanical behaviour of friction stir welded copper. In: Trends in intelligent robotics, automation, and manufacturing: first international conference, IRAM 2012, Kuala Lumpur, Malaysia, 28–30 Nov 2012, Proceedings, vol 330. Springer, p 458Google Scholar
  16. 16.
    Heidarzadeh A, Jabbari M, Esmaily M (2015) Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol 77(9–12):1819–1829CrossRefGoogle Scholar
  17. 17.
    Azizi A, Barenji RV, Barenji AV, Hashemipour M (2016) Microstructure and mechanical properties of friction stir welded thick pure copper plates. Int J Adv Manuf Technol 86(5–8):1985–1995CrossRefGoogle Scholar
  18. 18.
    Xue P, Xie GM, Xiao BL, Ma ZY, Geng L (2010) Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall Mater Trans A 41(8)CrossRefGoogle Scholar
  19. 19.
    Nia AA, Shirazi A (2016) Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates. Int J Miner Metall Mater 23(7):799–809CrossRefGoogle Scholar
  20. 20.
    Surekha K, Els-Botes A (2012) Effect of cryotreatment on tool wear behaviour of Bohler K390 and AISI H13 tool steel during friction stir welding of copper. Trans Indian Inst Met 65(3):259–264CrossRefGoogle Scholar
  21. 21.
    Fattah-Alhosseini A, Taheri AH, Keshavarz MK (2016) Effect of friction stir welding on electrochemical behavior of pure copper. Trans Indian Inst Met 69(7):1423–1434CrossRefGoogle Scholar
  22. 22.
    Emami S, Saeid T (2015) Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass. Acta Metallurgica Sinica (English Letters) 28(6):766–771CrossRefGoogle Scholar
  23. 23.
    Mao Y, Ke L, Chen Y, Liu F, Xing L (2017) Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints. J Mater Sci TechnolGoogle Scholar
  24. 24.
    Deng C, Gao R, Gong B, Yin T, Liu Y (2017) Correlation between micro-mechanical property and very high cycle fatigue (VHCF) crack initiation in friction stir welds of 7050 aluminum alloy. Int J Fatigue 104:283–292CrossRefGoogle Scholar
  25. 25.
    Sudhagar S, Sakthivel M, Mathew PJ, Daniel SAA (2017) A multi criteria decision making approach for process improvement in friction stir welding of aluminium alloy. Measurement 108:1–8CrossRefGoogle Scholar
  26. 26.
    Martinez N, Kumar N, Mishra RS, Doherty KJ (2017) Effect of tool dimensions and parameters on the microstructure of friction stir welded aluminum 7449 alloy of various thicknesses. Mater Sci Eng A 684:470–479CrossRefGoogle Scholar
  27. 27.
    Sinhmar S, Dwivedi DK (2017) Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling. Mater Sci Eng A 684:413–422CrossRefGoogle Scholar
  28. 28.
    Sun T, Reynolds AP, Roy MJ, Withers PJ, Prangnell PB (2017) The effect of shoulder coupling on the residual stress and hardness distribution in AA7050 friction stir butt welds. Mater Sci Eng AGoogle Scholar
  29. 29.
    Wang ZB, He ZB, Fan XB, Zhou L, Lin YL, Yuan SJ (2017) High temperature deformation behavior of friction stir welded 2024-T4 aluminum alloy sheets. J Mater Process Technol 247:184–191CrossRefGoogle Scholar
  30. 30.
    Martinez N, Kumar N, Mishra RS, Doherty KJ (2017) Microstructural variation due to heat gradient of a thick friction stir welded aluminum 7449 alloy. J Alloy Compd 713:51–63CrossRefGoogle Scholar
  31. 31.
    Sidhar H, Mishra RS, Reynolds AP, Baumann JA (2017) Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy. J Alloy Compd 722:330–338CrossRefGoogle Scholar
  32. 32.
    Liu CY, Qu B, Xue P, Ma ZY, Luo K, Ma MZ, Liu RP (2017) Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding. J Mater Sci TechnolGoogle Scholar
  33. 33.
    Liu X, Liu H, Wang T, Wang X, Yang S (2017) Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces. J Mater Sci TechnolGoogle Scholar
  34. 34.
    Abdulstaar MA, Al-Fadhalah KJ, Wagner L (2017) Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints. Mater Charact 126:64–73CrossRefGoogle Scholar
  35. 35.
    Liu H, Hu Y, Dou C, Sekulic DP (2017) An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy. Mater Charact 123:9–19CrossRefGoogle Scholar
  36. 36.
    Chen H, Fu L, Liang P, Liu F (2017) Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets. Mater Charact 125:160–173CrossRefGoogle Scholar
  37. 37.
    Heirani F, Abbasi A, Ardestani M (2017) Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy. J Manuf Process 25:77–84CrossRefGoogle Scholar
  38. 38.
    Gabrielli F, Forcellese A, El Mehtedi M, Simoncini M (2017) Mechanical properties and formability of cold rolled friction stir welded sheets in AA5754 for automotive applications. Procedia Eng 183:245–250CrossRefGoogle Scholar
  39. 39.
    Bevilacqua M, Ciarapica FE, D’Orazio A, Forcellese A, Simoncini M (2017) Sustainability analysis of friction stir welding of AA5754 sheets. Procedia CIRP 62:529–534CrossRefGoogle Scholar
  40. 40.
    Kumar PS, Shastry CS, Devaraju A (2017) Influence of tool revolving on mechanical properties of friction stir welded 5083Aluminum alloy. Mater Today: Proc 4(2):330–335CrossRefGoogle Scholar
  41. 41.
    Verma S, Misra JP (2017) Study on temperature distribution during friction stir welding of 6082 aluminum alloy. Mater Today: Proc 4(2):1350–1356CrossRefGoogle Scholar
  42. 42.
    Prasad SR, Kumar A, Reddy CS, Raju LS (2017) Influence of tool shoulder geometry on microstructure and mechanical properties of friction stir welded 2014-T6 aluminium alloy. Mater Today: Proc 4(9):10207–10211CrossRefGoogle Scholar
  43. 43.
    Sankar BR, Umamaheswarrao P (2017) Modelling and optimisation of friction stir welding on AA6061 Alloy. Mater Today: Proc 4(8):7448–7456CrossRefGoogle Scholar
  44. 44.
    Franke DJ, Morrow JD, Zinn MR, Duffie NA, Pfefferkorn FE (2017) Experimental determination of the effective viscosity of plasticized aluminum alloy 6061-T6 during friction stir welding. Procedia Manuf 10:218–231CrossRefGoogle Scholar
  45. 45.
    Imam M, Racherla V, Biswas K (2015) Effect of backing plate material in friction stir butt and lap welding of 6063-T4 aluminium alloy. The Int J Adv Manuf Technol 77(9–12):2181–2195CrossRefGoogle Scholar
  46. 46.
    Karthikeyan P, Mahadevan K (2015) Investigation on the effects of SiC particle addition in the weld zone during friction stir welding of Al 6351 alloy. The Int J Adv Manuf Technol 80(9–12):1919–1926CrossRefGoogle Scholar
  47. 47.
    Babu N, Karunakaran N, Balasubramanian V (2017) A study to estimate the tensile strength of friction stir welded AA 5059 aluminium alloy joints. The Int J Adv Manuf Technol 93(1–4):1–9CrossRefGoogle Scholar
  48. 48.
    Jamalian HM, Farahani M, Givi MB, Vafaei MA (2016) Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints. The Int J Adv Manuf Technol 83(1–4):611–621CrossRefGoogle Scholar
  49. 49.
    Imam M, Racherla V, Biswas K, Fujii H, Chintapenta V, Sun Y, Morisada Y (2017) Microstructure-property relation and evolution in friction stir welding of naturally aged 6063 aluminium alloy. The Int J Adv Manuf Technol 91(5–8):1753–1769CrossRefGoogle Scholar
  50. 50.
    Amini K, Gharavi F (2016) Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy. J Central South Univ 23(6):1301–1311CrossRefGoogle Scholar
  51. 51.
    Ramanjaneyulu K, Reddy GM, Rao AV (2014) Role of tool shoulder diameter in friction stir welding: an analysis of the temperature and plastic deformation of AA 2014 aluminium alloy. Trans Indian Inst Met 67(5):769–780CrossRefGoogle Scholar
  52. 52.
    Farzadi A, Bahmani M, Haghshenas DF (2017) Optimization of operational parameters in friction stir welding of AA7075-T6 aluminum alloy using response surface method. Arab J Sci Eng 42(11):4905–4916CrossRefGoogle Scholar
  53. 53.
    Reimann M, Goebel J, Gartner TM, dos Santos JF (2017) Refilling termination hole in AA 2198–T851 by refill friction stir spot welding. J Mater Process Technol 245:157–166CrossRefGoogle Scholar
  54. 54.
    Sun Y, Morisada Y, Fujii H, Tsuji N (2017) Ultrafine grained structure and improved mechanical properties of low temperature friction stir spot welded 6061-T6 Al alloys. Mater CharactGoogle Scholar
  55. 55.
    Su ZM, He RY, Lin PC, Dong K (2014) Fatigue analyses for swept friction stir spot welds in lap-shear specimens of alclad 2024-T3 aluminum sheets. Int J Fatigue 61:129–140CrossRefGoogle Scholar
  56. 56.
    Venukumar S, Muthukumaran S, Yalagi SG, Kailas SV (2014) Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets. Int J Fatigue 61:93–100CrossRefGoogle Scholar
  57. 57.
    Merzoug M, Mazari M, Berrahal L, Imad A (2010) Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Mater Des 31(6):3023–3028CrossRefGoogle Scholar
  58. 58.
    Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32(8):4461–4470CrossRefGoogle Scholar
  59. 59.
    Hassanifard S, Ahmadi SR, Pour MM (2013) Weld arrangement effects on the fatigue behavior of multi friction stir spot welded joints. Mater Des 44:291–302CrossRefGoogle Scholar
  60. 60.
    Wang DA, Chen CH (2009) Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets. J Mater Process Technol 209(1):367–375MathSciNetCrossRefGoogle Scholar
  61. 61.
    Su ZM, He RY, Lin PC, Dong K (2016) Fatigue of alclad AA2024-T3 swept friction stir spot welds in cross-tension specimens. J Mater Process Technol 236:162–175CrossRefGoogle Scholar
  62. 62.
    Li WY, Chu Q, Yang XW, Shen JJ, Vairis A, Wang WB (2018) Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy. J Mater Process Technol 252:69–80CrossRefGoogle Scholar
  63. 63.
    Venukumar S, Yalagi S, Muthukumaran S (2013) Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate. Trans Nonferrous Metals Soc China 23(10):2833–2842CrossRefGoogle Scholar
  64. 64.
    Xu Z, Li Z, Ji S, Zhang L (2017) Refill friction stir spot welding of 5083-O aluminum alloy. J Mater Sci TechnolGoogle Scholar
  65. 65.
    Cao JY, Wang M, Kong L, Zhao HX, Chai P (2017) Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy. Mater Charact 128:54–62CrossRefGoogle Scholar
  66. 66.
    Nasiri AM, Shen Z, Hou JSC, Gerlich AP (2018) Failure analysis of tool used in refill friction stir spot welding of Al 2099 alloy. Eng Fail Anal 84:25–33CrossRefGoogle Scholar
  67. 67.
    Garg A, Bhattacharya A (2017) On lap shear strength of friction stir spot welded AA6061 alloy. J Manuf Process 26:203–215CrossRefGoogle Scholar
  68. 68.
    Rostamiyan Y, Seidanloo A, Sohrabpoor H, Teimouri R (2015) Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Arch Civil Mech Eng 15(2):335–346CrossRefGoogle Scholar
  69. 69.
    Kubit A, Kluz R, Trzepieciński T, Wydrzyński D, Bochnowski W (2018) Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets. Arch Civil Mech Eng 18(1):235–244CrossRefGoogle Scholar
  70. 70.
    Jonckheere C, de Meester B, Cassiers C, Delhaye M, Simar A (2012) Fracture and mechanical properties of friction stir spot welds in 6063-T6 aluminum alloy. Int J Adv Manuf Technol 62(5):569–575CrossRefGoogle Scholar
  71. 71.
    Song X, Ke L, Xing L, Liu F, Huang C (2014) Effect of plunge speeds on hook geometries and mechanical properties in friction stir spot welding of A6061-T6 sheets. Int J Adv Manuf Technol 71Google Scholar
  72. 72.
    Zhou L, Luo LY, Zhang TP, He WX, Huang YX, Feng JC (2017) Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy. Int J Adv Manuf Technol 1–9Google Scholar
  73. 73.
    Santana LM, Suhuddin UFH, Ölscher MH, Strohaecker TR, dos Santos JF (2017) Process optimization and microstructure analysis in refill friction stir spot welding of 3-mm-thick Al-Mg-Si aluminum alloy. Int J Adv Manuf Technol 1–8Google Scholar
  74. 74.
    Kubit A, Bucior M, Wydrzyński D, Trzepieciński T, Pytel M (2017) Failure mechanisms of refill friction stir spot welded 7075-T6 aluminium alloy single-lap joints. Int J Adv Manuf Technol 1–13Google Scholar
  75. 75.
    Paidar M, Khodabandeh A, Najafi H, Rouh-aghdam AS (2014) Effects of the tool rotational speed and shoulder penetration depth on mechanical properties and failure modes of friction stir spot welds of aluminum 2024-T3 sheets. J Mech Sci Technol 28(12):4893–4898CrossRefGoogle Scholar
  76. 76.
    Pashazadeh H, Teimournezhad J, Masoumi A (2017) Experimental investigation on material flow and mechanical properties in friction stir welding of copper sheets. Int J Adv Manuf Technol 88(5–8):1961–1970CrossRefGoogle Scholar
  77. 77.
    Rao AN, Naik LS, Srinivas C (2017) Evaluation and impacts of tool profile and rotational speed on mechanical properties of friction stir welded copper 2200 alloy. J Manuf Process 4(2):1225–1229Google Scholar
  78. 78.
    Akinlabi ET, Sanusi KO, Muzenda E, Akinlabi SA (2017) Material behaviour characterization of friction stir spot welding of copper. Mater Today: Proc 4(2):166–177CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mukuna Patrick Mubiayi
    • 1
  • Esther Titilayo Akinlabi
    • 1
  • Mamookho Elizabeth Makhatha
    • 2
  1. 1.Department of Mechanical Engineering ScienceUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of MetallurgyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations