Skip to main content

Disturbance in Mesophotic Coral Ecosystems and Linkages to Conservation and Management

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Disturbances are a natural part of the ecology of reef ecosystems including mesophotic coral ecosystems (MCEs). Storms, thermal stress, and volcanism are all documented as direct or indirect impacts on MCEs and have been shaping these systems for millennia. In general, anthropogenic disturbances are increasingly challenging community resistance and resilience and, in some cases, altering community composition. Potential anthropogenic disturbances to MCEs include the effects of climate change (warming waters, extreme temperature fluctuations, sea level rise, and increased intensity and frequency of storms), ocean acidification, physical impacts (marine debris, anchoring, benthic infrastructure, and other mechanical disturbances), harvesting for fisheries and the aquarium trade, impacts from coastal development (turbidity and sedimentation), pollution, invasive species introduction, and increases in disease outbreaks. Many of these disturbances are shown to impact MCEs, with subsequent degradation occurring just as these systems are coming into increasing scientific and management focus. Thermal stress and ocean acidification are suggested to pose the greatest existential threat to MCEs, while many local disturbances are amenable to local management strategies. Increasing knowledge of the distribution and structure of MCEs is a critical first step in management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albins MA (2015) Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar Ecol Prog Ser 522:231–243

    Article  Google Scholar 

  • Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, Mason BM, Nebuchina Y, Ninokawa A, Pongratz J, Ricke KL, Rivlin T, Schneider K, Sesboüé M, Shamberger K, Silverman J, Wolfe K, Zhu K, Caldeira K (2016) Reversal of ocean acidification enhances net coral reef calcification. Nature 531:362–365

    Article  CAS  PubMed  Google Scholar 

  • Andradi-Brown D, Laverick J, Bejarano I, Bridge T, Colin PL, Eyal G, Jones R, Kahng SE, Reed J, Smith TB, Spalding HL, Weil E, Wood E (2016) Chapter 6. Threats to mesophotic coral ecosystems and management options. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs. The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, pp 67–82

    Google Scholar 

  • Andradi-Brown DA, Vermeij MJA, Slattery M, Lesser M, Bejarano I, Appeldoorn R, Goodbody-Gringley G, Chequer AD, Pitt JM, Eddy C, Smith SR, Brokovich E, Pinheiro HT, Jessup ME, Shepherd B, Rocha LA, Curtis-Quick J, Eyal G, Noyes TJ, Rogers AD, Exton DA (2017) Large-scale invasion of Western Atlantic mesophotic reefs by lionfish potentially undermines culling-based management. Biol Invasions 19:939–954

    Article  Google Scholar 

  • Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Limnol Oceanogr 52:716–726

    Article  Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Article  Google Scholar 

  • Aronson RB, Sebens KP, Ebersole JP (1994) Hurricane Hugo’s impact on Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Proceedings of the Colloquium on Global Aspects of Coral Reefs: health, hazards, and history. University of Miami, Miami, pp 189–195

    Google Scholar 

  • Baker EK, Puglise KA, Harris PT (eds) (2016) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, 98 p

    Google Scholar 

  • Baldock TE, Karampour H, Sleep R, Vyltla A, Albermani F, Golshani A, Callaghan DP, Roff R, Mumby PJ (2014) Resilience of branching and massive corals to wave loading under sea level rise – a coupled computational fluid dynamics-structural analysis. Mar Pollut Bull 86:91–101

    Article  CAS  PubMed  Google Scholar 

  • Ballantine DL, Ruiz H, Lozada-Troche C, Norris James N (2016) The genus Ramicrusta (Peyssonneliales, Rhodophyta) in the Caribbean Sea, including Ramicrusta bonairensis sp. nov. and Ramicrusta monensis sp. nov. Botanica Marina, pp 417–431

    Google Scholar 

  • Battisti C, Poeta G, Fanelli G (2016) An introduction to disturbance ecology: a road map for wildlife management and conservation. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Bejarano I, Appeldoorn RS, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33:313–328

    Article  Google Scholar 

  • Bessell-Browne P, Negri AP, Fisher R, Clode PL, Duckworth A, Jones R (2017) Impacts of turbidity on corals: the relative importance of light limitation and suspended sediments. Mar Pollut Bull 117:161–170

    Article  CAS  PubMed  Google Scholar 

  • Boavida J, Paulo D, Aurelle D, Arnaud-Haond S, Marschal C, Reed J, Gonçalves JMS, Serrão EA (2016) A well-kept treasure at depth: precious red coral rediscovered in Atlantic deep coral gardens (SW Portugal) after 300 years. PLoS ONE 11:e0147228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boland RC, Parrish FA (2005) A description of fish assemblages in the black coral beds off Lahaina, Maui, Hawaiʻi. Pac Sci 59:411–420

    Article  Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo E, Hoegh-Guldberg O (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Muir P, Englebert N, Bridge TCL, Hoegh-Guldberg O (2013) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935–935

    Article  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O (2015) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt ME, Smith TB, Correa AMS, Vega-Thurber R (2013) Disturbance driven colony fragmentation as a driver of a coral disease outbreak. PLoS ONE 8:e57164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandtneris VW, Brandt ME, Glynn PW, Gyory J, Smith TB (2016) Seasonal variability in calorimetric energy content of two Caribbean mesophotic corals. PLoS ONE 11:e0151953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bridge, TCL, Done TJ, Beaman RJ, Friedman A, Williams SB, Pizarro O, Webster, JM (2011) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30(1):143–153

    Article  Google Scholar 

  • Bridge T, Beaman R, Done T, Webster J (2012) Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE 7:e48203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Hughes TP, Guinotte JM, Bongaerts P (2013) Call to protect all coral reefs. Nat Clim Chang 3:528–530

    Article  Google Scholar 

  • Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Article  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington, DC

    Google Scholar 

  • Carilli JE, Norris RD, Black BA, Walsh SM, McField M (2009) Local stressors reduce coral resilience to bleaching. PLoS ONE 4:e6324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clemens E, Brandt ME (2015) Multiple mechanisms of transmission of the Caribbean coral disease white plague. Coral Reefs 34:1179–1188

    Article  Google Scholar 

  • Colin PL (2016) Chapter 3.6 Spotlight on the Palau Island group. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 31–36

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Costa BM, Kendall MS, Rooney J, Chow M, Lecky J, Parrish FA, Montgomery A, Boland RC, Spalding H (2012) Prediction of Mesophotic coral distributions in Auʻau channel, Hawaii. NOAA Technical Memorandum NOS NCCOS 149. NCCOS Center for Coastal Monitoring and Assessment Biogeography Branch, Silver Spring, 44 p

    Google Scholar 

  • Costa BK, Kracker LM, Battista T, Sautter W, Mabrouk A, Edwards K, Taylor C, Ebert E (2017) Benthic habitat maps for the insular shelf south of St. Thomas and St. John. NOAA Technical Memorandum NOS NCCOS 241. National Oceanic and Atmospheric Administration, Silver Spring, 59 p

    Google Scholar 

  • Côté IM, Darling ES (2010) Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8:e1000438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Angelo C, Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93

    Article  Google Scholar 

  • De Bakker DM, Meesters EH, Bak RPM, Nieuwland G, Van Duyl FC (2016) Long-term shifts in coral communities on shallow to deep reef slopes of Curaçao and Bonaire: are there any winners? Front Mar Sci 3:247

    Article  Google Scholar 

  • Dixon KR, Saunders GW (2013) DNA barcoding and phylogenetics of Ramicrusta and Incendia gen. nov., two early diverging lineages of the Peyssonneliaceae (Rhodophyta). Phycologia 52:82–108

    Article  Google Scholar 

  • Domeier ML, Colin PL (1997) Tropical reef fish spawning aggregations: defined and reviewed. Bull Mar Sci 60:698–726

    Google Scholar 

  • Done T (1983) Coral zonation: its nature and significance. In: Barnes DJ (ed) Contrib Aust Inst Mar Sci, no 200, pp 107–147

    Google Scholar 

  • Eckrich CE, Engel MS (2013) Coral overgrowth by an encrusting red alga (Ramicrusta sp.): a threat to Caribbean reefs? Coral Reefs 32:81–84

    Article  Google Scholar 

  • Edinger EN (2012) Gold mining and submarine tailings disposal: a review and case study. Oceanography 25:184–199

    Article  Google Scholar 

  • Edwards CB, Friedlander AM, Green AG, Hardt MJ, Sala E, Sweatman HP, Williams ID, Zgliczynski B, Sandin SA, Smith JE (2014) Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc R Soc B Biol Sci 281:1–10

    Article  PubMed  Google Scholar 

  • Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R, Johnston L, Young C, Iguel J, Edwards CB, Fox MD, Valentino L, Johnson S, Benavente D, Clark SJ, Carlton R, Burton T, Eynaud Y, Price NN (2015) Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat Clim Chang 5:1083–1088

    Article  CAS  Google Scholar 

  • Etnoyer PJ, Wickes LN, Silva M, Dubick JD, Balthis L, Salgado E, MacDonald IR (2016) Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35:77–90

    Article  Google Scholar 

  • Eyal G, Tamir R, Kramer N et al (2019) The Red Sea: Israel. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 199–214

    Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Fukunaga A, Kosaki RK, Wagner D, Kane C (2016) Structure of mesophotic reef fish assemblages in the Northwestern Hawaiian islands. PLoS ONE 11:e0157861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furnas M, Mitchell A, Skuza M, Brodie J (2005) In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar Pollut Bull 51:235–265

    Article  CAS  Google Scholar 

  • García-Sais JR (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29:277–288

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Grigg RW (2001) History of a sustainable fishery in Hawaiʻi. Pac Sci 55:291–299

    Google Scholar 

  • Grigg RW, Maragos JE (1974) Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55:387–395

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Groves S (2016) Physical drivers of community structure and growth among mesophotic coral ecosystems surrounding St. Thomas, U.S. Virgin Islands. M.S. Thesis, University of the Virgin Islands

    Google Scholar 

  • Groves SH, Holstein DM, Enochs IC, Kolodzeij G, Manzello DP, Brandt ME, Smith TB (2018) Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37(2):345–354

    Article  Google Scholar 

  • Harmelin-Vivien ML (1994) The effects of storms and cyclones on coral reefs: a review. J Coast Res 12:211–231

    Google Scholar 

  • Harvell CD, Mitchell C, Ward J, Altizer S, Dobson A, Ostfeld R, Samuel M (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2168

    Article  CAS  PubMed  Google Scholar 

  • Hinderstein L, Marr J, Martinez F, Dowgiallo M, Puglise K, Pyle R, Zawada D, Appeldoorn R (2010) Theme section on “mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29:247–251

    Article  Google Scholar 

  • Heron SF, Maynard JA, van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep 6:38402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Holling CS (1973) Resilience and the stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Holstein DM, Fletcher P, Groves SH, Smith TB (2019) Ecosystems services of mesophotic coral ecosystems and a call for better accounting. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 943–956

    Chapter  Google Scholar 

  • Hubbard DK (1986) Sedimentation as a control of reef development: St. Croix, U.S.V.I. Coral Reefs 5:117–125

    Article  Google Scholar 

  • Hubbard DK (1989) The shelf-edge reefs of Davis and Cane Bays, northwestern St. Croix, U.S.V.I. 12th Caribbean Geological Conference Spec Publ no 8, pp 167–180

    Google Scholar 

  • Hubbard DK (1992) Hurricane-induced sediment transport in open-shelf tropical systems: an example from St. Croix, U.S. Virgin Islands. J Sediment Petrol 62:946–960

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    Article  CAS  PubMed  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–636

    Article  CAS  PubMed  Google Scholar 

  • Jiang L-Q, Feely RA, Carter BR, Greeley DJ, Gledhill DK, Arzayus KM (2015) Climatological distribution of aragonite saturation state in the global oceans. Glob Biogeochem Cycles 29:1656–1673

    Article  CAS  Google Scholar 

  • Jokiel PL (1978) Effects of water motion on reef corals. J Exp Mar Biol Ecol 35:87–97

    Article  Google Scholar 

  • Kadison E, Brandt M, Nemeth R, Martens J, Blondeau J, Smith T (2017) Abundance of commercially important reef fish indicates different levels of over-exploitation across shelves of the U.S. Virgin Islands. PLoS ONE 12:e0180063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kahng SE (2013) Growth rate for a zooxanthellate coral (Leptoseris hawaiiensis) at 90 m. Galaxea. J Coral Reef Stud 15:39–40

    Article  Google Scholar 

  • Kahng SE, Grigg RW (2005) Impact of an alien octocoral, Carijoa riisei, on black corals in Hawaii. Coral Reefs 24:556–562

    Article  Google Scholar 

  • Kahng S, Kelley C (2007) Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Auʻau Channel, Hawaii. Coral Reefs 26:679–687

    Article  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65–77

    Article  CAS  Google Scholar 

  • Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 801–828

    Chapter  Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224

    Article  Google Scholar 

  • Kobluk DR, Lysenko MA (1992) Storm features on a Southern Caribbean fringing coral reef. PALAIOS 7:213–221

    Article  Google Scholar 

  • Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R, Rader DN, True JD, Kelly LA, Ahmad A, Jompa J, Harvell CD (2018) Plastic waste associated with disease on coral reefs. Science 359(6374):460–462

    Article  CAS  PubMed  Google Scholar 

  • Leichter JJ, Genovese SJ (2006) Intermittent upwelling and subsidized growth of the scleractinian coral Madracis mirabilis on the deep fore-reef of Discovery Bay, Jamaica. Mar Ecol Prog Ser 316:95–103

    Article  Google Scholar 

  • Leichter JJ, Miller SL (1999) Predicting high-frequency upwelling: spatial and temporal patterns of temperature anomalies on a Florida coral reef. Cont Shelf Res 19:911–928

    Article  Google Scholar 

  • Leichter JJ, Stewart HL, Miller SL (2003) Episodic nutrient transport to Florida coral reefs. Limnol Oceanogr 48:1394–1407

    Article  Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Article  Google Scholar 

  • Lesser MP, Bythell JC, Gates R, Johnstone R, Hoegh-Guldberg O (2007) Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol 346:36–44

    Article  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Linares C, Vidal M, Canals M, Kersting DK, Amblas D, Aspillaga E, Cebrián E, Delgado-Huertas A, Díaz D, Garrabou J, Hereu B, Navarro L, Teixidó N, Ballesteros E (2015) Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc R Soc B Biol Sci 282:20150587

    Article  CAS  Google Scholar 

  • Lindfield S, Harvey E, Halford A, McIlwain J (2015) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35(1):125–137

    Article  Google Scholar 

  • Locker SD, Armstrong RA, Battista TA, Rooney JJ, Sherman C, Zawada DG (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29:329–345

    Article  Google Scholar 

  • Loya Y, Rinkevich B (1980) Effects of oil pollution on coral reef communities. Mar Ecol Prog Ser 3:167–180

    Article  Google Scholar 

  • Lugo-Fernández A, Gravois M (2010) Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico. Cont Shelf Res 30:1226–1240

    Article  Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    Article  CAS  PubMed  Google Scholar 

  • Maniwavie T, Rewald J, Wagner T, Aitsi J, Munday P (2001) Recovery of corals after volcanic eruptions in Papua New Guinea. Coral Reefs 20:24

    Article  Google Scholar 

  • Manzello DP (2010) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of Eastern Pacific coral reefs. Limnol Oceanogr 55:239–248

    Article  CAS  Google Scholar 

  • Mumby PJ, Chisholm JRM, Edwards AJ, Andrefouet S, Jaubert J (2002) Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Mar Ecol Prog Ser 222:209–216

    Article  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304

    Article  Google Scholar 

  • Nemeth RS (2005) Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection. Mar Ecol Prog Ser 286:81–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyström M, Folke C (2001) Spatial resilience of coral reefs. Ecosystems 4:406–417

    Article  Google Scholar 

  • Nyström M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15:413–417

    Article  PubMed  Google Scholar 

  • Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30

    Article  CAS  PubMed  Google Scholar 

  • Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K, Esteves R, Fonseca AC, Forrester GE, Friedlander AM, García-Sais J, González-Sansón G, Jordan LKB, McClellan DB, Miller MW, Molloy PP, Mumby PJ, Nagelkerken I, Nemeth M, Navas-Camacho R, Pitt J, Polunin NVC, Reyes-Nivia MC, Robertson DR, Rodrìguez-Ramìrez A, Salas E, Smith SR, Spieler RE, Steele MA, Williams ID, Wormald CL, Watkinson AR, Cȏté IM (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595

    Article  CAS  PubMed  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Article  Google Scholar 

  • Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shepherd B, Chequer AD, Rocha LA (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35:139–151

    Article  Google Scholar 

  • Porter JW, Dustan P, Jaap WC, Patterson KL, Kosmynin V, Meier OW, Patterson KL, Parsons M (2001) Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460:1–24

    Article  Google Scholar 

  • Precht WF, Hickerson EL, Schmahl GP, Aronson RB (2014) The invasive coral Tubastraea coccinea (lesson, 1829): implications for natural habitats in the Gulf of Mexico and the Florida Keys. Gulf Mexico Sci 1–2:55–59

    Google Scholar 

  • Pueschel CM, Saunders GW (2009) Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycologia 48:480–491

    Article  Google Scholar 

  • Reed JK, Koenig CC, Shepard AN (2007) Impacts of bottom trawling on a deep-water Oculina coral ecosystem off Florida. Bull Mar Sci 81:481–496

    Google Scholar 

  • Reed JK, Farrington S, David A, Harter S, Pomponi S, Diaz MC, Voss JD, Spring KD, Hine AC, Kourfalou V, Smith RH, Vaz AC, Paris CB, Hanisak MD (2019) Pulley Ridge, Gulf of Mexico, USA. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 57–69

    Chapter  Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531

    Article  Google Scholar 

  • Sattar SA, Adam MS (2005) Review of grouper fishery of the Maldives with additional notes on the Faafu Atoll fishery. Marine Research Center, Malé 55pp

    Google Scholar 

  • Schils T (2012) Episodic eruptions of volcanic ash trigger a reversible cascade of nuisance species outbreaks in pristine coral habitats. PLoS ONE 7(10):e46639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt GM, Phongsuwan N, Jantzen C, Roder C, Khokiattiwong S, Richter C (2012) Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations. Mar Ecol Prog Ser 456:113–126

    Article  CAS  Google Scholar 

  • Schofield PJ (2009) Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the western North Atlantic and Caribbean Sea. Aquat Invasions 4:473–479

    Article  Google Scholar 

  • Smith TB, Nemeth RS, Blondeau J, Calnan JM, Kadison E, Herzlieb S (2008) Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Mar Pollut Bull 56:1983–1991

    Article  CAS  PubMed  Google Scholar 

  • Smith TB, Blondeau J, Nemeth RS, Pittman SJ, Calnan JM, Kadison E, Gass J (2010) Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U.S. Virgin Islands. Coral Reefs 29:289–308

    Article  Google Scholar 

  • Smith TB, Glynn PW, Maté JL, Toth LT, Gyory J (2014) A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95:1663–1673

    Article  PubMed  Google Scholar 

  • Smith TB, Brandtneris VW, Canals M, Brandt ME, Martens J, Brewer RS, Kadison E, Kammann M, Keller J, Holstein DM (2016a) Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front Mar Sci 3:115

    Google Scholar 

  • Smith TB, Ennis R, Kadison E, Nemeth RS, Henderson LM (2016b) The United States Virgin Islands Territorial Coral Reef Monitoring Program, 2016 Annual Report. University of the Virgin Islands, United States Virgin Islands, 286 p

    Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016c) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    Article  PubMed  Google Scholar 

  • Smith TB, Maté JL, Gyory J (2017) Thermal refuges and refugia for stony corals in the eastern tropical Pacific. In: Glynn WP, Manzello PD, Enochs CI (eds) Coral reefs of the eastern tropical Pacific: persistence and loss in a dynamic environment. Springer Netherlands, Dordrecht, pp 501–515

    Chapter  Google Scholar 

  • Smith TB, Brandt ME, Brandtneris VW, Ennis RS, Groves SH, Habtes S, Holstein DM, Kadison E, Nemeth RS (2019) The United States Virgin Islands. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 131–147

    Chapter  Google Scholar 

  • Spalding H (2012) Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian islands. University of Hawaiʻi at Manoa, Honolulu, 199 p

    Google Scholar 

  • Tobias W (1997) Three year summary report: Cooperative Fisheries Statistics Program #SF–42 (NA27FT0301–01). Department of Fish and Wildlife, United States Virgin Islands, 41 pp

    Google Scholar 

  • Tomascik T, van Woesik R, Mah AJ (1996) Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15:169–175

    Article  Google Scholar 

  • Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili J-M (2010) The exploitation and conservation of precious corals oceanography and marine biology. CRC Press, Tampa, pp 161–211

    Google Scholar 

  • Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2013) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Chang Biol 20:544–554

    Article  PubMed  Google Scholar 

  • Vroom PS, Zgliczynski BJ (2011) Effects of volcanic ash deposits on four functional groups of a coral reef. Coral Reefs 30:1025–1032

    Article  Google Scholar 

  • Wall M, Putchim L, Schmidt GM, Jantzen C, Khokiattiwong S, Richter C (2015) Large-amplitude internal waves benefit corals during thermal stress. Proc R Soc B Biol Sci 282:20140650

    Article  CAS  Google Scholar 

  • Weber M, Lott C, Fabricius KE (2006) Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. J Exp Mar Biol Ecol 336:18–32

    Article  CAS  Google Scholar 

  • Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RMM, Ferdelman TG, Fabricius KE (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci U S A 109:E1558–E1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weil E (2019) Disease problems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 779–800

    Chapter  Google Scholar 

  • Weinstein DK, Smith TB, Klaus JS (2014) Mesophotic bioerosion: variability and structural impact on U.S. Virgin Island deep reefs. Geomorphology 222:14–24

    Article  Google Scholar 

  • Weinstein DK, Klaus JS, Smith TB (2015) Habitat heterogeneity reflected in mesophotic reef sediments. Sediment Geol 329:177–187

    Article  CAS  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS, Smith TB, Giri SJ, Helmle KP (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Article  Google Scholar 

  • West JM, Salm RV (2003) Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv Biol 17:956–967

    Article  Google Scholar 

  • White KN, Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, Naruse T, McClelland TY, Denis V, Reimer JD (2013) Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ 1:e151

    Article  PubMed  PubMed Central  Google Scholar 

  • White KN, Weinstein DK, Ohara T, Denis V, Montenegro J, Reimer JD (2017) Shifting communities after—typhoon damage on an upper mesophotic reef in Okinawa, Japan. PeerJ 5:e3573

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodley JD, Chornesky EA, Clifford PA, Jackson JBC, Kaufman LS, Knowlton N, Lang JC, Pearson MP, Porter JW, Rooney MC, Rylaarsdam KW, Tunnicliffe VJ, Wahle CM, Wulff JL, Curtis ASG, Dallmeyer MD, Jupp BP, Koehl MAR, Neigel J, Sides EM (1981) Hurricane Allen’s impact on Jamaican coral reefs. Science 214:749–755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the generous contribution of photos by Gal Eyal, Viktor Brandtneris, Robert K. Whitton, and Richard Pyle. We would also like to thank the editors of this book Y. Loya, T. Bridge, and K. Puglise for immense patience in receiving this chapter. Delays were caused in the form of two very large disturbances, major Hurricanes Irma and Maria, that hit the US Virgin Islands on September 6 and 20, 2017, respectively. The effects of these disturbances on the MCEs are unknown, but ongoing research will likely add greatly to our understanding of storm impacts on MCEs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler B. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, T.B., Holstein, D.M., Ennis, R.S. (2019). Disturbance in Mesophotic Coral Ecosystems and Linkages to Conservation and Management. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_47

Download citation

Publish with us

Policies and ethics