Skip to main content

Bioerosion

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

The study of bioerosion, a widespread process greatly impacting reef biodiversity, structural complexity, and sediment production, has largely focused on shallow-water reefs with no review of this process in deeper environments. In this first synthesis of bioerosion literature for mesophotic reefs (subtropical and tropical ecosystems in low-light conditions at depths of ~30 to 150 m), we show that the distribution of key bioeroder taxa, their abundances, and overall bioerosion rates are considerably different on mesophotic reefs compared to their shallow-water counterparts. In particular, carbonate grazing and phototrophic microboring rates decline with depth from shallow to mesophotic reefs. In the absence of significant erosive action by grazers, sponges are hypothesized as the primary long-term bioeroders on lower mesophotic reefs (60–150 m) and possibly on some upper mesophotic reefs (30–60 m). Given these factors, we postulate that mesophotic reef substrates experience slower bioerosion rates and lose less carbonate than shallower reefs over the same timeframe. This likely stems from differences in photosynthetically active radiation and other factors such as temperature, sedimentation, bioeroder food abundance and quality, substrate characteristics, and exposure time for bioerosion. There is a critical need to document mesophotic bioeroders via taxonomic inventories, as well as quantify their bioerosion rates across mesophotic depths in terms of specific bioeroder guilds using experimental substrates. These data will aid management efforts to maintain positive net carbonate budgets on mesophotic reefs, ensuring that sufficient three-dimensional structure is available to support biodiversity at mesophotic depths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alwany MA, Thaler E, Stachowitsch M (2009) Parrotfish bioerosion on Egyptian Red Sea reefs. J Exp Mar Biol Ecol 371:170–176

    Google Scholar 

  • Andradi-Brown DA, Gress E, Wright G et al (2016) Reef fish community biomass and trophic structure changes across shallow to upper-mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. PLoS ONE 11:e0156641

    PubMed  PubMed Central  Google Scholar 

  • Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res I Oceanogr Res Pap 48:2185–2194

    Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I et al (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35(1):63–75

    Google Scholar 

  • Asher J, Williams ID, Harvey ES (2017) Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the main Hawaiian Islands. Front Mar Sci 4:98

    Article  Google Scholar 

  • Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10(3):285–337

    Google Scholar 

  • Baker PA, Weber JN (1975) Coral growth rate: variation with depth. Earth Planet Sci Lett 27(1):57–61

    Google Scholar 

  • Baker EK, Puglise KA, Harris PT (eds) (2016) Mesophotic coral ecosystems – a lifeboat for coral reefs? United Nations Environment Programme and GRID, Nairobi, 98p

    Google Scholar 

  • Bejarano I, Appeldoorn RS, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33(2):313–328

    Google Scholar 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fish 28(1–4):189–214

    Google Scholar 

  • Bonaldo RM, Hoey AS, Bellwood DR (2014) The ecosystem roles of parrotfishes on tropical reefs. In: Hughes RN, Hughes DJ, Smith IP (eds) Oceanography and marine biology: an annual review. CRC Press, Boca Raton, pp 81–132

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM et al (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29(2):309–327

    Google Scholar 

  • Bosscher H, Schlager W (1992) Computer simulation of reef growth. Sedimentology 39(3):503–512

    Google Scholar 

  • Bouchon-Navaro Y, Harmelin-Vivien ML (1981) Quantitative distribution of herbivorous reef fishes in the Gulf of Aqaba (Red Sea). Mar Biol 63(1):79–86

    Google Scholar 

  • Bridge TCL, Luiz OJ, Coleman RR et al (2016) Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc R Soc Lond [Biol] 283:20152332

    Google Scholar 

  • Brokovich E, Ayalon I, Einbinder S et al (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM et al (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Res 50(3):881–903

    Google Scholar 

  • Cardoso SC, Soares MC, Oxenford HA et al (2009) Interspecific differences in foraging behaviour and functional role of Caribbean parrotfish. Mar Biodivers Rec 2:1–6

    Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeogr Palaeoclimatol Palaeoecol 113(2–4):189–198

    Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M et al (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21(4):375–390

    Google Scholar 

  • Chazottes V, Cabioch G, Golubic S et al (2009) Bathymetric zonation of modern microborers in dead coral substrates from New Caledonia – implications for paleodepth reconstructions in Holocene corals. Palaeogeogr Palaeoclimatol Palaeoecol 280(3–4):456–468

    Google Scholar 

  • Clements KD, German DP, Piché J et al (2016) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc 120:729–751

    Google Scholar 

  • Dennis GD, Bright TJ (1988) Reef fish assemblages on hard banks in the northwestern Gulf of Mexico. Bull Mar Sci 43:280–307

    Google Scholar 

  • Dullo W, Gektidis M, Golubic S et al (1995) Factors controlling Holocene reef growth: an interdisciplinary approach. Facies 32(1):145–188

    Google Scholar 

  • Färber C, Wisshak M, Pyko I et al (2015) Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean). PLoS ONE 10:e0126495

    PubMed  PubMed Central  Google Scholar 

  • Feitoza BM, Rosa RS, Rocha LA (2005) Ecology and zoogeography of deep-reef fishes in northeastern Brazil. Bull Mar Sci 76:725–742

    Google Scholar 

  • Friedlander AM, Sandin SA, DeMartini EE et al (2010) Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Mar Ecol Prog Ser 410:219–231

    Google Scholar 

  • Fukunaga A, Kosaki RK, Wagner D et al (2016) Structure of mesophotic reef fish assemblages in the Northwestern Hawaiian Islands. PLoS ONE 11:e0157861

    PubMed  PubMed Central  Google Scholar 

  • García-Sais JR (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic-mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29(2):277–288

    Google Scholar 

  • Gektidis M, Dubinsky Z, Goffredo S (2007) Microendoliths of the shallow euphotic zone in open and shaded habitats at 30°N–Eilat, Israel–paleoecological implications. Facies 53(1):43–55

    Google Scholar 

  • Glynn PW, Manzello DP (2015) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, Dordrecht, pp 67–97

    Google Scholar 

  • Golubic SS, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) Study of trace fossils. Springer, Berlin, pp 229–259

    Google Scholar 

  • Goreau TF, Hartman WD (1963) Control of coral reefs by boring sponges. In: Sognnaes RF (ed) Mechanisms of hard tissue destruction. AAAS Publishing, Washington, DC, pp 25–54

    Google Scholar 

  • Greenstein BJ, Pandolfi JM (2003) Taphonomic alteration of reef corals: effects of reef environment and coral growth form II: the Florida Keys. Palaios 18:495–509

    Google Scholar 

  • Grigg RW (2006) Depth limit for reef building corals in the Auʻau Channel, S.E. Hawaii. Coral Reefs 25(1):77–84

    Google Scholar 

  • Günther A (1990) Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22(1):233–261

    Google Scholar 

  • Hassan M (1998) Modification of carbonate substrata by bioerosion and bioaccretion on coral reefs of the Red Sea. Shaker Verlag, Aachen (thesis)

    Google Scholar 

  • Hatcher BG, Larkum AWD (1983) An experimental analysis of factors controlling the standing crop of the epilithic algal community on a coral reef. J Exp Mar Biol Ecol 69(1):61–84

    Google Scholar 

  • Heindel K, Westphal H, Wisshak M (2009) Data report: bioerosion in the reef framework, IODP Expedition 310 off Tahiti (Tiarei, Maraa, and Faaa sites). In: Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists (eds) Proceedings of the Integrated Ocean Drilling Program. Integrated Ocean Drilling Program Management International, Washington, DC

    Google Scholar 

  • Hernández-Ballesteros LM, Elizalde-Rendón EM, Carballo JL et al (2013) Sponge bioerosion on reef-building corals: dependent on the environment or on skeletal density? J Exp Mar Biol Ecol 441:23–27

    Google Scholar 

  • Highsmith RC (1981) Coral bioerosion: damage relative to skeletal density. Am Nat 117(2):193–198

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA et al (2010) Theme section on “Mesophotic Coral Ecosystems: Characterization, Ecology, and Management.” Coral Reefs 29(2):247–251

    Google Scholar 

  • Hoskin CM, Reed JK, Mook DH (1986) Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar Geol 73(1–2):125–144

    Google Scholar 

  • Hubbard DK (2009) Depth and species-related patterns of Holocene reef accretion in the Caribbean and Western Atlantic: a critical assessment of existing models. In: Swart PK, Eberli GP, McKenzie JA (eds) Perspectives in carbonate geology: a tribute to the career of Robert Nathan Ginsburg. International Association of Sedimentologists Special Publication. Blackwell, Oxford, pp 1–18

    Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of seven species of scleractinian corals from Cane Bay and Salt River, St. Croix, USVI. Bull Mar Sci 36(2):325–338

    Google Scholar 

  • Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): applications to the nature of reef systems in the fossil record. J Sediment Res 60(3):335–360

    Google Scholar 

  • Hughes TP (1987) Skeletal density and growth form of corals. Mar Ecol Prog Ser 35:259–266

    Google Scholar 

  • Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4(1):19–25

    Google Scholar 

  • Hutchings PA (2011) Bioerosion. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Dordrecht, pp 139–156

    Google Scholar 

  • James NP, Ginsburg RN (1979) The seaward margin of Belize barrier and atoll reefs: morphology, sedimentology, organism distribution and late Quaternary history. Blackwell Scientific Publishing Ltd., Oxford, 204p

    Google Scholar 

  • Kahle D, Wickham H (2013) ggmap: spatial visualization with ggplot 2. R J 5:144–161

    Google Scholar 

  • Kahng SE, García-sais JR, Spalding HL et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29(2):255–275

    Article  Google Scholar 

  • Kane C, Kosaki RK, Wagner D (2014) High levels of mesophotic reef fish endemism in the northwestern Hawaiian Islands. Bull Mar Sci 90:693–703

    Google Scholar 

  • Kiene WE (1985) Biological destruction of experimental coral substrates at Lizard Island (Great Barrier Reef, Australia). In: Harmelin Vivien M, Salvat B (eds) Proceedings of the 5th International Coral Reef Symposium, vol 5. Tahiti, pp 339–344 Miscellaneous Paper (A)

    Google Scholar 

  • Kiene WE, Hutchings PA (1993) Long-term bioerosion of experimental coral substrates from Lizard Island, Great Barrier Reef. In: Richmond RH (ed) Proceedings of the 7th International Coral Reef Symposium, vol 1. University of Guam Press, UOG Station, Guam, pp 397–403

    Google Scholar 

  • Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13(2):91–98

    Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13(8):1855–1868

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic reefs. J Exp Mar Bio Ecol 375:1-8

    Google Scholar 

  • Lewis SM, Wainwright PC (1985) Herbivore abundance and grazing intensity on a Caribbean coral reef. J Exp Mar Biol Ecol 87(3):215–228

    Google Scholar 

  • Liddell WD, Ohlhorst SL (1986) Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J Exp Mar Biol Ecol 95(3):271–278

    Google Scholar 

  • Liddell WD, Ohlhorst SL (1988) Hard substrata community patterns, 1–120 m, north Jamaica. Palaios 3(4):413–423

    Google Scholar 

  • Liddell WD, Ohlhorst SL, Boss SK (1984) Community patterns on the Jamaican fore-reef (15–56 m). Paleontol Am 54:385–389

    Google Scholar 

  • Lindfield SJ, Harvey ES, Halford AR et al (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35(1):125–137

    Google Scholar 

  • Lough JM, Cooper TF (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth-Sci Rev 108(3–4):170–184

    CAS  Google Scholar 

  • MacGeachy JK (1977) Factors controlling sponge boring in Barbados reef corals. In: Taylor DL (ed) Proceedings of the 3rd International Coral Reef Symposium, vol 2: Geology. Rosenstiel School of Marine and Atmospheric Science, Miami, pp 477–483

    Google Scholar 

  • MacGeachy JK, Stearn CW (1976) Boring by macroorganisms in the coral Montastrea annularis on Barbados reefs. Int Rev Hydrobiol Hydrogr 61(6):715–745

    Google Scholar 

  • Maher RL, Johnston MA, Brandt ME, Smith TB, Correa AMS (2018) Depth and coral cover drive the distribution of a coral macroborer across two reef systems. PLoS ONE 13(6):e0199462

    PubMed  PubMed Central  Google Scholar 

  • Moore and Shedd (1977) Effective rates of sponge bioerosion as a function of carbonate production. In: Taylor DL (ed) Proceedings of the 3rd International Coral Reef Symposium, vol 2: Geology. Rosenstiel School of Marine and Atmospheric Science, Miami, pp 499–505

    Google Scholar 

  • Morrison D (1988) Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology 69(5):1367–1382

    Google Scholar 

  • Mumby PJ (2009) Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs 28(3):683–690

    Google Scholar 

  • Muñoz RC, Buckel CA, Whitfield PE et al (2017) Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef. PLoS ONE 12:e0188598

    PubMed  PubMed Central  Google Scholar 

  • Nemeth RS, Smith TB, Blondeau J et al (2008) Characterization of deep water reef communities within the Marine Conservation District, St. Thomas, U.S. Virgin Islands. Caribbean Fisheries Management Council Final Report 3349, 82 p

    Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Google Scholar 

  • Ogden JC, Lobel PS (1978) The role of herbivorous fishes and urchins in coral reef communities. Environ Biol Fish 3(1):49–63

    Google Scholar 

  • Perry CT (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17(3):277–287

    Google Scholar 

  • Perry CT (1999) Reef framework preservation in four contrasting modern reef environments, Discovery Bay, Jamaica. J Coast Res 15(3):796–812

    Google Scholar 

  • Perry CT, Harborne AR (2016) Bioerosion on modern reefs: impacts and responses under changing ecological and environmental conditions. In: Hubbard DK, Rogers CS, Lipps JH, Stanley GD Jr (eds) Coral reefs at the crossroads. Springer, Dordrecht, pp 69–101

    Google Scholar 

  • Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth-Sci Rev 86(1–4):106–144

    Google Scholar 

  • Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186(1–2):101–113

    Google Scholar 

  • Perry CT, Edinger EN, Kench PS et al (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31(3):853–868

    Google Scholar 

  • Perry CT, Murphy GN, Kench PS et al (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nat Commun 4:1402

    PubMed  Google Scholar 

  • Perry CT, Murphy GN, Kench PS et al (2014) Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc R Soc B Biol Sci 281(1796):20142018

    Google Scholar 

  • Pinheiro HT, Mazzei E, Moura RL et al (2015) Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PLoS ONE 10:e0118180

    PubMed  PubMed Central  Google Scholar 

  • Pinheiro HT, Goodbody-Gringley G, Jessup ME et al (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35(1):139–151

    Google Scholar 

  • Reaka-Kudla ML, Feingold JS, Glynn W (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15(2):101–107

    Google Scholar 

  • Rosa MR, Alves AC, Medeiros DV et al (2016) Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35(1):113–123

    Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6(4):345–363

    Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull 92(4):197–211

    Google Scholar 

  • Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Mar Ecol 23(4):313–326

    Google Scholar 

  • Schönberg CHL, Fang JKH, Carballo JL (2017a) Bioeroding sponges and the future of coral reefs. In: Carballo J, Bell J (eds) Climate change, ocean acidification and sponges: impacts across multiple levels of organization. Springer, Cham, pp 179–372

    Google Scholar 

  • Schönberg CHL, Fang JKH, Carreiro-Silva M et al (2017b) Bioerosion: the other ocean acidification problem. ICES J Mar Sci 74(1):895–925

    Google Scholar 

  • Sherman C, Locker SD, Webster JM et al (2019) Geology and geomorphology. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 849–878

    Google Scholar 

  • Smith TB, Kadison E, Henderson L et al (2012) The United States Virgin Islands Territorial Coral Reef Monitoring Program, 2011 Annual Report. University of the Virgin Islands, United States Virgin Islands, 243 p

    Google Scholar 

  • Smith TB, Ennis RS, Kadison E et al (2015) The United States Virgin Islands Territorial Coral Reef Monitoring Program, year 15 Annual Report. Version 1. University of the Virgin Islands, United States Virgin Islands, 288 p

    Google Scholar 

  • Steneck RS (1983) Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew. In: Reaka ML (ed) The ecology of deep and shallow coral reefs. Symposia Series for Undersea Research, Office of Undersea Research, NOAA, Rockville, MD, pp 103–111

    Google Scholar 

  • Tapanila L, Hutchings P (2012) Reefs and mounds. In: Knaust D, Bromley RG (eds) Developments in sedimentology: trace fossils as indicators of sedimentary environments. vol 64. Elsevier, Amsterdam, pp 751–775

    Google Scholar 

  • Thresher RE, Colin PL (1986) Trophic structure, diversity and abundance of fishes of the deep reef (30–300 m) at Enewetak, Marshall Islands. Bull Mar Sci 38:253–272

    Google Scholar 

  • Toro-Farmer G, Cantera Kintz JR, Londoño-Cruz E et al (2004) Patrones de distribución y tasas de bioerosión del erizo Centrostephanus coronatus (Diadematoida: Diadematidae), en el arrecife de Playa Blanca, Pacífico Colombiano. Rev Biol Trop 52:67–76

    PubMed  Google Scholar 

  • Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin/Heidelberg, pp 67–94

    Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24(3):422–434

    Google Scholar 

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 435–449

    Google Scholar 

  • Tribollet A, Decherf G, Hutchings P et al (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21(4):424–432

    Google Scholar 

  • Tribollet A, Radtke G, Golubic S (2011) Bioerosion. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer Netherlands, Dordrecht, pp 117–134

    Google Scholar 

  • van den Hoek C, Breeman AM, Bak RPM et al (1978) The distribution of algae, corals and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing coral reef of Curaçao, Netherlands Antilles. Aquat Bot 5:1–46

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S et al (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas, and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33(3):190–204

    Google Scholar 

  • Watanabe T, Watanabe TK, Yamazaki A et al (2019) Coral sclerochronology: similarities and differences in the coral isotopic signatures between mesophotic and shallow-water reefs. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 667–681

    Google Scholar 

  • Weinstein DK (2014) Deep reef bioerosion and deposition: sedimentology of mesophotic coral reefs in the U.S. Virgin Islands. Dissertation, University of Miami

    Google Scholar 

  • Weinstein DK, Smith TB, Klaus JS (2014) Mesophotic bioerosion: variability and structural impact on U.S. Virgin Island deep reefs. Geomorphology 222:14–24

    Google Scholar 

  • Weinstein DK, Klaus JS, Smith TB (2015) Habitat heterogeneity reflected in mesophotic reef sediments. Sediment Geol 329:177–187

    CAS  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS et al (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Google Scholar 

  • White KN, Weinstein DK, Ohara T et al (2017) Shifting communities after typhoon damage on an upper mesophotic reef in Okinawa, Japan. PeerJ 5:e3573

    PubMed  PubMed Central  Google Scholar 

  • Wilkinson CR (1983) Role of sponges in coral reef structural processes. In: Barnes DJ (ed) Perspectives on coral reefs. Australian Institute of Marine Science, Townsville, pp 263–274

    Google Scholar 

  • Wilson S, Bellwood DR (1997) Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar Ecol Prog Ser 153:299–310

    CAS  Google Scholar 

  • Wisshak M (2012) Microbioerosion. In: Knaust D, Bromley RG (eds) Developments in sedimentology: trace fossils as indicators of sedimentary environments. vol 64. Elsevier, Amsterdam, pp 213–243

    Google Scholar 

  • Wisshak M, Form A, Jakobsen J et al (2010) Temperate carbonate cycling and water mass properties from intertidal to bathyal depths (Azores). Biogeosciences 7:2379–2396

    CAS  Google Scholar 

  • Wisshak M, Tribollet A, Golubic S et al (2011) Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9:492–520

    CAS  PubMed  Google Scholar 

  • Woods R (1999) Reef evolution. Oxford University Press, Oxford, 426p

    Google Scholar 

  • Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges–lessons from Pione cf. vastifica. J Exp Biol 210:91–96

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to the memory of Robert Ginsburg, who was an early pioneer advocating mesophotic reef research, as well as a great inspiration, mentor, teacher, and friend. We thank the editors for inviting us to contribute to this important book. Special thanks to Christine Schönberg for providing critical suggestions, edits, and detailed review and to Clark Sherman and William Kiene for reviewing earlier versions of this chapter and suggesting improvements. Alan Weinstein provided editorial review. We also greatly appreciate the constructive comments and suggestions for improving this chapter from Peter Glynn, Chris Perry, Stjepko Golubic, and an anonymous reviewer. USVI funding (to DKW) was provided by the National Science Foundation (NSF), the Geological Society of America, Sigma Xi, ExxonMobil, the Academy of Underwater Arts and Sciences, the RSMAS Graduate Student Fund, the University of Miami Center for Latin American Studies, and the Leonard and Jayne Abess/Citizens Board. Support was also provided by a Zuckerman STEM Postdoctoral Scholarship (DKW). A Sigma Xi Grants-in-Aid of Research (to RLM) and awards from the NSF (BIO-OCE 1635798 and 1800914 to AMSC) also supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Weinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinstein, D.K., Maher, R.L., Correa, A.M.S. (2019). Bioerosion. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_43

Download citation

Publish with us

Policies and ethics