Skip to main content

Fishes: Biodiversity

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Abstract

Fishes are an important component of coral reef ecosystems, and in comparison to other marine phyla, the taxonomy of fishes is relatively robust. Some of the earliest explorations of mesophotic coral ecosystems (MCEs) involving both submersibles and rebreather diving focused on fishes. Since 1968, over 400 publications have documented fishes on MCEs, ~75% of which were published since 2011. Most fish species inhabiting MCEs belong to families and genera typical of shallow coral reefs, and many new species remain to be discovered and described. Species richness generally peaks at a depth of 30 m and declines with increasing depth. The composition of the fish communities on MCEs includes a mixture of species restricted to MCEs and species with broad depth ranges. Patterns of species turnover and composition vary depending on geographic location, ecological characteristics, and method of study. Nearly 70% of MCE fish research has occurred within the tropical western Atlantic and Hawaiʻi. Not enough is known about global distributions to infer broad biogeographical patterns, but there seems to be higher representation by endemic species and individuals on MCEs, and the eastward attenuation of diversity of shallow Pacific reefs does not appear to apply to fishes within MCEs. Analyses of nearly 900,000 occurrence records of reef fishes at depths of 1–200 m reveal patterns of diversity that are mostly consistent with controlled studies. Future work should emphasize basic exploration and documentation of diversity in under-sampled geographic regions and hypothesis-driven studies in areas where logistics facilitate MCE research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These data were primarily obtained through specimens collected with hand nets and the ichthyocide rotenone. Thus, they are biased against larger predatory species, such as Jacks (Carangidae) and snappers (Lutjanidae), both of which are well represented on shallow reefs and MCEs.

  2. 2.

    A single specimen of Symphysanodon berryi is indicated in the GBIF database as being at a depth of 0–57 m in the Gulf of Mexico [MCZ 81819], but the actual recorded depth on the label for that specimen (a larvae) is 47–57 m, so it is indeed from MCE depths.

  3. 3.

    Another consideration is that the MCE depth zone is four times broader than the shallow depth zone. Even correcting for sampling bias, it is unlikely that four times as many species occur on MCEs than on shallow reefs, so it is likely that diversity per available habitat area is higher on shallow reefs than on MCEs.

  4. 4.

    At each 10-m threshold depth interval, the number of species with a reported maximum depth within 10 m above the threshold depth were added to the number of species with a reported minimum depth within 10 m below the threshold depth (representing the total number of species participating in a turnover within ±10 m of the threshold depth), and the summed value was divided by the total number of species that occur within ±10 m of the threshold depth, to yield a percentage of species that participate in a turnover at each depth zone. Larger values indicate a more substantial break; smaller values indicate a less substantial break. Percentage of total species within a depth zone was used instead of absolute numbers of species to avoid artificially biasing the amount of change due to differences in α diversity at different depths.

References

  • Ajemian MJ, Wetz JJ, Shipley-Lozano B, Shively JD, Stunz GW (2015a) An analysis of artificial reef fish community structure along the northwestern Gulf of Mexico shelf: potential impacts of “Rigs-to-Reefs” programs. PLoS ONE 10(5):e0126354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ajemian MJ, Wetz JJ, Shipley-Lozano B, Stunz GW (2015b) Rapid assessment of fish communities on submerged oil and gas platform reefs using remotely operated vehicles. Fish Res 167:143–155

    Article  Google Scholar 

  • Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat Conserv Mar Freshw Ecosyst 18:541–556

    Article  Google Scholar 

  • Allen GR, Erdmann MV (2012) Reef fishes of the East Indies, vol I–III. Tropical Reef Research, Perth 1292 p

    Google Scholar 

  • Anderson WD, Johnson GD (2017) Two new species of callanthiid fishes of the genus Grammatonotus (Percoidei: Callanthiidae) from Pohnpei, western Pacific. Zootaxa 4243(1):187–194

    Article  PubMed  Google Scholar 

  • Anderson WD Jr, Greene BD, Rocha LA (2016) Grammatonotus brianne, a new callanthiid fish from Philippine waters, with short accounts of two other Grammatonotus from the Coral Triangle. Zootaxa 4173(3):289–295

    Article  PubMed  Google Scholar 

  • Andradi-Brown DA, Macaya-Solis C, Exton DA, Gress E, Wright G, Rogers AD (2016) Assessing Caribbean shallow and mesophotic reef fish communities using baited-remote underwater video (BRUV) and diver-operated video (DOV) survey techniques. PLoS ONE 11(12):e0168235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andradi-Brown DA, Gress E, Laverick JH, Monfared MAA, Rogers AD, Exton DA (2017) Wariness of reef fish to passive diver presence with varying dive gear type across a coral reef depth gradient. J Mar Biol Assoc UK:1–11

    Google Scholar 

  • Andrews KR, Moriwake V, Wilcox C, Kelley C, Grau EG, Bowen BW (2014) Phylogeographic analyses of submesophotic snappers Etelis coruscans and Etelismarshi” (Family Lutjanidae) reveal concordant genetic structure across the Hawaiian Archipelago. PLoS ONE 9(4):e91665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong RA, Singh H (2012) Mesophotic coral reefs of the Puerto Rico Shelf. Seafloor geomorphology as benthic habitat. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat: GeoHab Atlas of seafloor geomorphic features and benthic habitats. Elsevier, London, pp 365–374

    Chapter  Google Scholar 

  • Armstrong RA, Singh H, Kunz C (2011) Large-scale mapping and characterization of deep reef habitats in the US Caribbean In: Proceedings of the 63rd Gulf and Caribbean Fisheries Institute, San Juan, Puerto Rico, pp 134–138

    Google Scholar 

  • Armstrong RA, Pizarro O, Roman C (2019) Underwater robotic technology for imaging mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 973–988

    Chapter  Google Scholar 

  • Asher JM, Williams I, Harvey E (2017a) Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the Main Hawaiian Islands. Front Mar Sci 4:1–18

    Article  Google Scholar 

  • Asher J, Williams ID, Harvey ES (2017b) An assessment of mobile predator populations along shallow and mesophotic depth gradients in the Hawaiian Archipelago. Nat Sci Rep 7(3905):1–18

    CAS  Google Scholar 

  • Baker EK, Puglise KA, Harris PT (2016) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, 98 pp

    Google Scholar 

  • Baldwin CC, Robertson DR (2013) A new Haptoclinus blenny (Teleostei, Labrisomidae) from deep reefs off Curaçao, southern Caribbean, with comments on relationships of the genus. ZooKeys 2013(306):71–81

    Google Scholar 

  • Baldwin CC, Pitassy DE, Robertson DR (2016) A new deep-reef scorpionfish (Teleostei, Scorpaenidae, Scorpaenodes) from the southern Caribbean with comments on depth distributions and relationships of western Atlantic members of the genus. Zookeys 606:141–158

    Article  Google Scholar 

  • Bejarano IV, Nemeth MI, Appeldoorn RS (2011) Use of mixed-gas rebreathers to access fish assemblages in mesophotic coral ecosystems (MCE) off La Parguera shelf-edge, Puerto Rico. In: Proceedings of the 63rd Gulf and Caribbean Fisheries Institute, pp 130–133

    Google Scholar 

  • Bejarano I, Appeldoorn RS, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33(2):313–328

    Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic, New York, pp 5–32

    Chapter  Google Scholar 

  • Bellwood DR, Goatley CHR, Cowman PF, Bellwood O (2015) The evolution of fishes on coral reefs: fossils, phylogenies and functions. In: Mora C (ed) Ecology of fishes on coral reefs. Cambridge University Press, Cambridge, pp 55–63

    Google Scholar 

  • Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G (2017) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Blyth-Skyrme V, Rooney JJ, Parrish FA, Boland RC (2013) Mesophotic coral ecosystems—potential candidates as essential fish habitat and habitat areas of particular concern. Pacific Islands Fisheries Science Center, National Marine Fisheries Science Center Administrative Report H-13–02, US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center

    Google Scholar 

  • Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28(6):359–366

    Article  PubMed  Google Scholar 

  • Bridge TCL, Done TJ, Friedman A, Beaman RJ, Williams SB, Pizarro O, Webster JM (2011) Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 428:63–75

    Article  Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39(1):12–30

    Article  Google Scholar 

  • Brock VE, Chamberlain TC (1968) A geological and ecological reconnaissance off western Oahu, Hawaii, principally by means of the research submersible “Asherah.” Pac Sci 22(3):373–394

    Google Scholar 

  • Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S (2008) Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar Ecol Prog Ser 371:253–262

    Article  Google Scholar 

  • Bryan DR, Kilfoyle K, Gilmore RG, Spieler RE (2013) Characterization of the mesophotic reef fish community in South Florida, USA. J Appl Ichthyol 29(1):108–117

    Article  Google Scholar 

  • Cánovas-Molina A, Montefalcone M, Bavestrello G, Cau A, Bianchi CN, Morri C, Canese S, Bo M (2016) A new ecological index for the status of mesophotic megabenthic assemblages in the Mediterranean based on ROV photography and video footage. Cont Shelf Res 121:13–20

    Article  Google Scholar 

  • Cappo M, Stowar M, Stieglitz T, Lawrey, E, Johansson C, Macneil A (2012) Measuring and communicating effects of MPAs on deep “shoal” fisheries. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012, pp 1–5

    Google Scholar 

  • Carpenter KE (1998) An introduction to the oceanography, geology, biogeography, and fisheries of the tropical and subtropical western and central Pacific. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the western central pacific. FAO, Rome, p 117

    Google Scholar 

  • Carpenter KE, Springer VG (2005) The center of the center of marine shore fish biodiversity: the Philippine Islands. Env Biol Fish 72:467–480

    Article  Google Scholar 

  • Carvalho-Filho A, Macena BCL, Nunes DM (2016) A new species of Anthiadinae (Teleostei: Serranidae) from São Pedro and São Paulo Archipelago, Brazil, Equatorial Atlantic. Zootaxa 4139(4):585–592

    Article  PubMed  Google Scholar 

  • Chave EH, Mundy BC (1994) Deep-sea benthic fish of the Hawaiian Archipelago, Cross Seamount, and Johnston Atoll. Pac Sci 48(4):367–409

    Google Scholar 

  • Clarivate Analytics (2017) Web of science. Clarivate Analytics. https://www.webofknowledge.com. Accessed 9 Aug 2017

  • Colin PL (1974) Observation and collection of deep-reef fishes off the coasts of Jamaica and British Honduras (Belize). Mar Biol 24:29–38

    Article  Google Scholar 

  • Colin PL (1976) Observations of deep-reef fishes in the Tongue-of-the-Ocean, Bahamas. Bull Mar Sci 26(4):603–605

    Google Scholar 

  • Colin PL, Devaney DM, Hills-Colinvaux L, Suchanek TH, Harrison JT III (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38(1):111–128

    Google Scholar 

  • Conway KW, Moore GI, Summers AP (2017) A new genus and species of clingfish (Teleostei: Gobiesocidae) from western Australia. Copeia 105(1):128–140

    Article  Google Scholar 

  • Copus JM, Ka‘apu-Lyons CA, Pyle RL (2015a) Luzonichthys seaver, a new species of Anthiinae (Perciformes, Serranidae) from Pohnpei, Micronesia. Biodiv Data J 3:e4902

    Google Scholar 

  • Copus JM, Pyle RL, Earle JL (2015b) Neoniphon pencei, a new species of holocentrid (Teleostei: Beryciformes) from Rarotonga, Cook Islands. Biodiv Data J 3:e4180

    Article  Google Scholar 

  • Cowman PF, Bellwood DR (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40(2):209–224

    Article  Google Scholar 

  • Crosby MP, Reese ES (1996) A manual for monitoring coral reefs with indicator species: butterflyfishes as indicators of change on Indo Pacific reefs. Office of Ocean and Coastal Resource Management, NOAA, Silver Spring

    Google Scholar 

  • Dennis GD, Bright TJ (1988) Reef fish assemblages on hard banks in the northwestern Gulf of Mexico. Bull Mar Sci 43(2):280–307

    Google Scholar 

  • Earle JL, Pyle RL (1997) Hoplolatilus pohle, a new species of sand tilefish (Perciformes: Malacanthidae) from the deep reefs of the D’Entrecasteaux Islands, Papua New Guinea. Copeia 1997(2):382–387

    Article  Google Scholar 

  • Easton EE, Sellanes J, Gaymer CF, Morales N, Gorny M, Berkenpas E (2017) Diversity of deep-sea fishes of the Easter Island Ecoregion. Deep Sea Res Part II 137:78–88

    Article  Google Scholar 

  • Eschmeyer WN, Fricke R, Fong JD, Polack DA (2010) Marine fish diversity: history of knowledge and discovery (Pisces). Zootaxa 2525:19–50

    Article  Google Scholar 

  • Explorer’s Log (2017) Explorer’s log website. http://explorers-log.com. Accessed 1 Jul 2017

  • Feitoza BM, Rosa RS, Rocha LA (2005) Ecology and zoogeography of deep-reef fishes in northeastern Brazil. Bull Mar Sci 76(3):725–742

    Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CE, Gasparini JL, Brito A (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35(1):22–47

    Google Scholar 

  • Fricke HW, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone. Oecologia 71:29–37

    Article  CAS  PubMed  Google Scholar 

  • Fricke R, Earle JL, Pyle RL, Séret B (2010) Checklist of the fishes. In: Bouchet P, Le Guyader H, Pascal O (eds) Natural history of Santo. Muséum National d’Histoire Naturelle/Institut de Recherche pour le Développement/Pro-Natura International, Paris/Marseille/Paris, pp 383–409

    Google Scholar 

  • Fukunaga A, Kosaki RK, Wagner D, Kane C (2016) Structure of mesophotic reef fish assemblages in the Northwestern Hawaiian Islands. PLoS ONE 11(7):e0157861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukunaga A, Kosaki RK, Wagner D (2017a) Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36(3):785–790

    Article  Google Scholar 

  • Fukunaga A, Kosaki RK, Hauk BB (2017b) Distribution and abundance of the introduced snapper Lutjanus kasmira (Forsskål, 1775) on shallow and mesophotic reefs of the Northwestern Hawaiian Islands. BioInvasions Rec 6(3):259–268

    Article  Google Scholar 

  • Gaither MR, Rocha LA (2013) Origins of species richness in the Indo-Malay-Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. J Biogeogr 40(9):1638–1648

    Article  Google Scholar 

  • Gaither MR, Jones SA, Kelley C, Newman SJ, Sorenson L, Bowen BW (2011) High connectivity in the deepwater snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with isolation of the Hawaiian Archipelago. PLoS ONE 6(12):e28913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Sais JR (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29:277–288

    Article  Google Scholar 

  • GBIF (2017) GBIF occurrence download. http://www.gbif.org/occurrence. Accessed 1 Jul 2017

  • Gill AC, Pyle RL, Earle JL (1996) Pseudochromis ephippiatus, new species of dottyback from southeastern Papua New Guinea (Teleostei: Perciformes: Pseudochromidae). Rev Fr d’Aquariol 23(3–4):97–100

    Google Scholar 

  • Gill AC, Tea YK, Senou H (2017) Pseudanthias tequila, a new species of anthiadine serranid from the Ogasawara and Mariana Islands. Zootaxa 4341(1):67–76

    Article  PubMed  Google Scholar 

  • Gilmore RG, Jones RS (1992) Color variation and associated behavior in the epinepheline groupers, Mycteroperca microlepis (Goode and Bean) and M. phenax Jordan and Swain. Bull Mar Sci 51(1):83–103

    Google Scholar 

  • Gomes G, Sampaio I, Schneider H (2012) Population structure of Lutjanus purpureus (Lutjanidae-Perciformes) on the Brazilian coast: further existence evidence of a single species of red snapper in the western Atlantic. An Acad Bras Cienc 84:979–999

    Article  PubMed  Google Scholar 

  • Gosline WA (1955) The inshore fish fauna of Johnston Island, a Central Pacific atoll. Pac Sci 9(4):442–480

    Google Scholar 

  • Gosline WA (1957) The nature and evolution of the Hawaiian inshore fish fauna. Oceanogr Proc Eighth Pac Sci Congr 1953(3):347–357

    Google Scholar 

  • Gosline WA, Brock VE (1960) Handbook of Hawaiian fishes. University of Hawaiʻi Press, Honolulu

    Google Scholar 

  • Hamilton RW (1990) Call it ‘high-tech’ diving. aquaCORPS 1:6–9, 50

    Google Scholar 

  • Harvey E, McLean DL, Frusher S, Haywood M, Newman S, Williams A (2013) The use of BRUVs as a tool for assessing marine fisheries and ecosystems: a review of the hurdles and potential. Fisheries Research and Development Corporation and the University of Western Australia, Crawley

    Google Scholar 

  • Hastings PA, Conway KW (2017) Gobiesox lanceolatus, a new species of clingfish (Teleostei: Gobiesocidae) from Los Frailes submarine canyon, Gulf of California, Mexico. Zootaxa 4221(3):393–400

    Article  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29(2):247–251

    Article  Google Scholar 

  • Hoeksema BW, Fransen CH, van der Meij SE, Reijnen BT, Rauch C, van Tienderen KM, Lau YW, Becking LE, van Soest RW (2014) Discoveries with the Curasub in the Dutch Caribbean deep. Report 2013–2014 Naturalis Research and Education, pp 92–93

    Google Scholar 

  • Hourigan TF, Tricas TC, Reese ES (1988) Coral reef fishes as indicators of environmental stress in coral reefs. In: Soule DF, Kleppel GS (eds) Marine organisms as indicators. Springer, New York, pp 107–135

    Chapter  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    Article  CAS  PubMed  Google Scholar 

  • Itzkowitz M, Haley M, Otis C, Evers D (1991) A reconnaissance of the deeper Jamaican coral reef fish communities. Northeast Gulf Sci 12(1):25–34

    Article  Google Scholar 

  • Jessup ME (2014) Mesophotic coral ecosystems: tools and techniques for scientific exploration. In: Diving for science 2014, p 14

    Google Scholar 

  • Jordan DS, Evermann BW (1905) The aquatic resources of the Hawaiian Islands. Government Printing Office, Washington, DC

    Book  Google Scholar 

  • Kane C, Kosaki RK, Wagner D (2014) High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Islands. Bull Mar Sci 90(2):693–703

    Article  Google Scholar 

  • Keyse J, Crandall ED, Toonen RJ, Meyer CP, Treml EA, Riginos C (2014) The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region. Bull Mar Sci 90(1):47–78

    Article  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Animal Ecol 72:367–382

    Article  Google Scholar 

  • Kosaki RK (1989) Centropyge nahackyi, a new species of angelfish from Johnston Atoll (Teleostei: Pomacanthidae). Copeia 4:880–886

    Article  Google Scholar 

  • Kosaki RK, Pyle RL, Randall JE, Irons DK (1991) New records of fishes from Johnston Atoll, with notes on biogeography. Pac Sci 45(2):186–203. http://hdl.handle.net/10125/519

    Google Scholar 

  • Kosaki RK, Pyle RL, Leonard JC, Hauk BB, Whitton RK, Wagner D (2016) 100% endemism in mesophotic reef fish assemblages at Kure Atoll, Hawaiian Islands. Mar Biodivers 2016:1–2

    Google Scholar 

  • Krishna NM, Rao VG, Venu D (2017) Pseudanthias vizagensis sp. nov., a new anthiine fish (subfamily: Anthiinae), genus Pseudanthias, from India. J Exp Zool, India 20(1):213–216

    Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Inv 13(8):1855–1868

    Article  Google Scholar 

  • Lindfield SJ, Harvey ES, Halford AR, McIlwain JL (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35(1):125–137

    Article  Google Scholar 

  • Locker SD, Reed JK, Farrington S, Harter S, Hine AC, Dunn S (2016) Geology and biology of the “Sticky Grounds,” shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico. Cont Shelf Res 125:71–87

    Article  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Article  Google Scholar 

  • Malcolm HA, Jordan A, Smith SDA (2011) Testing a depth-based Habitat Classification System against reef fish assemblage patterns in a subtropical marine park. Aqua Cons Mar Fresh Ecol 21(2):173–185

    Article  Google Scholar 

  • Meirelles PM, Amado-Filho GM, Pereira-Filho GH, Pinheiro HT, De Moura RL, Joyeux JC, Mazzei EF, Bastos AC, Edwards RA, Dinsdale E (2015) Baseline assessment of mesophotic reefs of the Vitória-Trindade Seamount Chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10(6):e0130084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menduno M (1991a) What is technical diving? technicalDIVER 2.2:3

    Google Scholar 

  • Menduno M (1991b) Technically speaking. aquaCORPS 3:45

    Google Scholar 

  • Moffitt RB, Parrish FA, Polovina JJ (1989) Community structure, biomass and productivity of deepwater artificial reefs in Hawaii. Bull Mar Sci 44(2):616–630

    Google Scholar 

  • Mora C, Chittaro PM, Sale PF, Kritzer JP, Ludsin SA (2003) Patterns and processes in reef fish diversity. Nature 421(6926):933–936

    Article  CAS  PubMed  Google Scholar 

  • Motomura H, Yoshida T, Vilasri V (2017) New species of the anthiadin genus Sacura (Perciformes: Serranidae) from the Andaman Sea. Zootaxa 4306(2):291–295

    Article  Google Scholar 

  • Mundy BC (2005) Checklist of the fishes of the Hawaiian Archipelago. Bishop Museum Press, Honolulu

    Google Scholar 

  • Myers RF (1999) Micronesian reef fishes: a comprehensive guide to the coral reef fishes of Micronesia, 3rd edn. Coral Graphics, Barrigada

    Google Scholar 

  • Nelson WR, Appeldoorn RS (1985) A submersible survey of the continental slope of Puerto Rico and the US Virgin Islands, 1–23 October 1985. Cruise report, R/V Seward Johnson, National Marine Fisheries Service, Pascagoula, Mississippi Laboratories

    Google Scholar 

  • Olavo G, Costa PAS, Martins AS, Ferreira BP (2011) Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aqua Cons Mar Fresh Ecol 21(2):199–209

    Article  Google Scholar 

  • Ovenden JR, Salini J, O’Cconnor S, Street R (2004) Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei; Perciformes; Lutjanidae) from the East Indies Triangle. Mol Ecol 13(7):1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333(6041):418–422

    Article  CAS  PubMed  Google Scholar 

  • Parker RO Jr, Ross SW (1986) Observing reef fishes from submersibles off North Carolina. Northeast Gulf Sci 8(1):31–49

    Article  Google Scholar 

  • Parrish FA, Pyle RL (2002) Field comparison of open-circuit scuba to closed-circuit rebreathers for deep mixed-gas diving operations. Mar Tech Soc J 36(2):13–22

    Article  Google Scholar 

  • Pearson R, Stevens T (2015) Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar Ecol Prog Ser 532:185–196

    Article  Google Scholar 

  • Pence DF, Pyle RL (2002) University of Hawaii dive team completes Fiji deep reef fish surveys using mixed-gas rebreathers. SLATE April:1–3

    Google Scholar 

  • Pereira-Filho GH, Amado-Filho GM, Guimarães SMPB, Moura RL, Sumida PYG, Abrantes DP, Bahia RG, Güth AZ, Jorge RR, Francini Filho RB (2011) Reef fish and benthic assemblages of the Trindade and Martin Vaz Island group, southwestern Atlantic. Braz J Oceanogr 59(3):201–212

    Article  Google Scholar 

  • Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC, Costa PAS, Ferreira BP, Ferreira CEL, Floeter SR (2015) Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PLoS ONE 10(3):e0118180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shepherd B, Chequer AD, Rocha LA (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35(1):139–151

    Article  Google Scholar 

  • Pollock NW, Sellers SH, Godfrey JM (2016) Rebreathers and scientific diving. In: Proceedings of NPS/NOAA/DAN/AAUS February 16–19, 2015 Workshop. Wrigley Marine Science Center, Catalina Island

    Google Scholar 

  • Pomar L, Morsilli M, Hallock P, Bádenas B (2012) Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth Sci Rev 111:56–81

    Article  Google Scholar 

  • Prokofiev AM (2017) New species of the genus Tryssogobius (Gobiidae) from the tropical the Western Pacific with a complete set of pores of the seismosensory system on the head. J Ichthyol 57(2):321–324

    Article  Google Scholar 

  • Pyle RL (1991) Rare and unusual marines: so many fish, so little time. Freshw Mar Aquar 14(4):42–44

    Google Scholar 

  • Pyle RL (1993) Marine aquarium fish. In: Wright A, Hill L (eds) Nearshore marine resources of the South Pacific: information for fisheries development and management. Institute of Pacific Studies, Suva; Forum Fisheries Agency, Honiara; and International Centre for Ocean Development, Canada, pp 135–176

    Google Scholar 

  • Pyle RL (1995) Chapter 12. Pacific reef and shore fishes. In: Maragos JE, Peterson MNA, Eldredge LG, Bardach JE, Takeuchi HF (eds) Marine and coastal biodiversity in the Tropical Island Pacific Region. 1. Species Systematics and Information Management Priorities. Program on Environment, East-West Center, Honolulu, pp 205–238

    Google Scholar 

  • Pyle RL (1996a) The twilight zone. Nat Hist 105(11):59–62

    Google Scholar 

  • Pyle RL (1996b) How much coral reef biodiversity are we missing? Global Biodiver 6(1):3–7

    Google Scholar 

  • Pyle RL (1998) Chapter 7. Use of advanced mixed-gas diving technology to explore the coral reef “Twilight Zone.” In: Tanacredi JT, Loret J (eds) Ocean pulse: a critical diagnosis. Plenum Press, New York, pp 71–88

    Chapter  Google Scholar 

  • Pyle RL (1999a) Mixed-gas, closed-circuit rebreather use for identification of new reef fish species from 200–500 fsw. In: Hamilton RW, Pence DF, Kesling DE (eds) Assessment and feasibility of technical diving operations for scientific exploration. American Academy of Underwater Sciences, Nahant, pp 53–65

    Google Scholar 

  • Pyle RL (1999b) Patterns of coral reef fish biogeography in the Pacific region. In: Eldredge LG, Maragos JE, Holthus PF, Takeuchi HF (eds) Marine and coastal biodiversity in the Tropical Island Pacific Region: population, development, and conservation priorities, vol 2. Program on Environment, East-West Center/Pacific Science Association, Bishop Museum, Honolulu, pp 157–175

    Google Scholar 

  • Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Tech Soc J 34(4):82–91

    Article  Google Scholar 

  • Pyle RL (2005) Recent discoveries of new fishes inhabiting deep Pacific coral reefs, with biogeographic implications. 7th Indo-Pacific Fish Conference, Taipei

    Google Scholar 

  • Pyle RL (2016) Rebreather evolution in the foreseeable future. In: Pollock NW, Sellers SH, Godfrey JM (eds) Rebreathers and scientific diving, Proceedings of NPS/NOAA/DAN/AAUS February 16–19, 2015 Workshop. Wrigley Marine Science Center, Catalina Island, pp 40–65

    Google Scholar 

  • Pyle RL (2019a) Advanced technical diving. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 959–972

    Chapter  Google Scholar 

  • Pyle RL (2019b) Fiji. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 369–385

    Chapter  Google Scholar 

  • Pyle RL, Copus JM (2019) Mesophotic coral ecosystems: introduction and overview. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 3–27

    Chapter  Google Scholar 

  • Pyle RL, Kosaki RK (2016) Prognathodes basabei, a new species of butterflyfish (Perciformes, Chaetodontidae) from the Hawaiian Archipelago. ZooKeys 614:137–152

    Article  Google Scholar 

  • Pyle RL, Earle JL, Greene BD (2008) Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa 1671:3–31

    Article  Google Scholar 

  • Pyle RL, Boland R, Bolick H, Bowen B, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery AD, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL (2016a) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyle RL, Greene BD, Kosaki RK (2016b) Tosanoides obama, a new basslet (Perciformes, Percoidei, Serranidae) from deep coral reefs in the Northwestern Hawaiian Islands. ZooKeys 641:165–181

    Article  Google Scholar 

  • Pyle RL, Copus JM, McCormack G (2019) Cook Islands. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 409–423

    Chapter  Google Scholar 

  • Pyle RL, Greene BD, Copus JM, Randall JE (2018) Tosanoides annepatrice, a new basslet from deep coral reefs in Micronesia (Perciformes, Percoidei, Serranidae). Zookeys 786:139–153

    Google Scholar 

  • Pyle RL, Copus JM, Bowen BB, Kosaki RK (In press) The habitat persistence hypothesis: a new perspective on the distribution of coral-reef organisms. J Biogeogr

    Google Scholar 

  • Randall JE (1995) Zoogeographic analysis of the inshore Hawaiian fish fauna. In: Maragos JE, MNA P, Eldredge LG, Bardach JE, Takeuchi HF (eds) Marine and coastal biodiversity in the tropical island Pacific region. East-West Center, Ocean Policy Institute, and Pacific Science Association, Honolulu, pp 193–203

    Google Scholar 

  • Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37(4):227–268

    Google Scholar 

  • Randall JE (2005) Reef and shore fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawaiʻi Press, Honolulu

    Google Scholar 

  • Randall JE (2007) Reef and shore fishes of the Hawaiian Islands. University of Hawaiʻi Sea Grant College program, Honolulu

    Google Scholar 

  • Randall JE, Pyle RL (2001a) Four new serranid fishes of the anthiine genus Pseudanthias from the South Pacific. Raffles Bull Zool 49(1):19–34

    Google Scholar 

  • Randall JE, Pyle RL (2001b) Three new species of labrid fishes of the genus Cirrhilabrus from islands of tropical Pacific. Aqua 4(3):89–98

    Google Scholar 

  • Randall JE, Lobel PS, Chave EH (1985) Annotated checklist of the fishes of Johnston Island. Pac Sci 39(1):24–80

    Google Scholar 

  • Reed JK, Farrington S, David A, Harter S, Moe H, Horn L, Taylor G, White J, Voss J, Pomponi S, Hanisak D (2017) Characterization of mesophotic coral/sponge habitats and fish assemblages in the regions of Pulley Ridge and Tortugas from ROV dives during R/V Walton Smith cruises of 2012 to 2015. NOAA CIOERT Cruise Report. Submitted to NOAA-NOS-NCCOS, NOAA Office of Ocean Exploration and Research. Harbor Branch Oceanographic Institute Technical Report, vol 178, 76 p. https://data.nodc.noaa.gov/coris/library/NOAA/Non-CRCP/Corals/Reed2017a_Pulley_Ridge_ROV_Cruise_Report.pdf

  • Reese ES (1994) Reef fishes as indicators of conditions on coral reefs. In: Ginsburg RN (ed) Proceedings of the Colloquium on Global Aspects of Coral Reefs: health, hazards and history, 1993. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, pp 59–65

    Google Scholar 

  • Reese ES, Crosby MP (1999) The use of indicator species for coral reef monitoring. In: Maragos JE, Grober-Dunsmore R (eds) Proceedings of the Hawaii Coral Reef Monitoring Workshop: a tool for management, June 8–11, 1998. Department of Land and Natural Resources and East-West Center for Development, Honolulu

    Google Scholar 

  • Rocha LA, Pinheiro HT, Wandell M, Rocha CR, Shepherd B (2017) Roa rumsfeldi, a new butterflyfish (Teleostei, Chaetodontidae) from mesophotic coral ecosystems of the Philippines. ZooKeys 2017(709):127–134

    Article  Google Scholar 

  • Rosa MR, Alves AC, Medeiros DV, Coni EOC, Ferreira CM, Ferreira BP, de Souza Rosa R, Amado-Filho GM, Pereira-Filho GH, de Moura RL (2016) Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35(1):113–123

    Article  Google Scholar 

  • Rosen BR (1988) Progress, problems and patterns in the biogeography of reef corals and other tropical marine organisms. Helgoländer Meeresun 42(2):269–301

    Article  Google Scholar 

  • Sale PF (ed) (1991) The ecology of fishes on coral reefs. Academic, New York

    Google Scholar 

  • Semmler RF, Hoot WC, Reaka ML (2017) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36(2):433–444

    Article  Google Scholar 

  • Sherman C, Appeldoorn R, Carlo M, Nemeth M, Ruíz H, Bejarano I (2009) Use of technical diving to study deep reef environments in Puerto Rico. In: Pollock NW (ed) Diving for science 2009, Proceedings of the American Academy of Underwater Sciences 28th Symposium. American Academy of Underwater Sciences, Dauphin Island, pp 58–65

    Google Scholar 

  • Shinn EA, Wicklund RI (1989) Artificial reef observations from a manned submersible off southeast Florida. Bull Mar Sci 44(2):1041–1050

    Google Scholar 

  • Simon T, Pinheiro H, Moura R, Carvalho-Filho A, Rocha L, Martins AS, Mazzei E, Francini-Filho R, Amado-Filho G, Joyeux J (2016) Mesophotic fishes of the Abrolhos shelf, the largest reef ecosystem in the South Atlantic. J Fish Biol 89(1):990–1001

    Article  CAS  PubMed  Google Scholar 

  • Sinniger F, Ballantine DL, Bejarano I, Colin PL, Pochon X, Pomponi SA, Puglise KA, Pyle RL, Reaka ML, Spalding HL, Weil E (2016) Biodiversity of mesophotic coral ecosystems. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 50–62

    Google Scholar 

  • Slattery M, Lesser MP (2012) Mesophotic coral reefs: a global model of community structure and function In: Proceedings of the 12th International Coral Reef Symposium, pp 9–13

    Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. Univ. California Press, Berkeley

    Google Scholar 

  • Spalding HL, Copus JM, Bowen BW, Kosaki RK, Longenecker K, Montgomery AD, Padilla-Gamiño JL, Parrish FA, Roth MS, Rowley SJ, Toonen RJ, Pyle RL (2019) The Hawaiian Archipelago. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 445–464

    Chapter  Google Scholar 

  • Springer VG (1982) Pacific plate biogeography, with special reference to shorefishes. Smithsonian Institution Press, Washington, DC

    Book  Google Scholar 

  • Starck WA II (1973) New diving technology for marine scientists. Aust Nat Hist 17:181

    Google Scholar 

  • Starck WA II, Starck JD (1972) From the Bahamas to Belize: probing the deep reef’s hidden realm. Natl Geogr 149(12):867–886

    Google Scholar 

  • Stiller J, Wilson NG, Rouse GW (2015) A spectacular new species of seadragon (Syngnathidae). R Soc Open Sci 2:140458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strasburg DW, Jones EC, Iverson RTB (1968) Use of a small submarine for biological and oceanographic research. J Cons Perm Int Explor Mer 31(3):410–426

    Article  Google Scholar 

  • Streich MK, Ajemian MJ, Wetz JJ, Stunz GW (2017) A comparison of fish community structure at mesophotic artificial reefs and natural banks in the western Gulf of Mexico. Mar Coastal Fish 9(1):170–189

    Article  Google Scholar 

  • Tea YK, Senou H, Greene BD (2016) Cirrhilabrus isosceles, a new species of wrasse (Teleostei: Labridae) from the Ryukyu Archipelago and the Philippines, with notes on the C. lunatus complex. J Ocean Sci Found 21:18–37

    Google Scholar 

  • Tenggardjaja KA, Bowen BW, Bernardi G (2014) Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS ONE 9(12):e115493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thresher RE, Colin PL (1986) Trophic structure diversity and abundance of fishes of the deep reef (30–300 m) at Enewetak, Marshall Islands. Bul Mar Sci 38(1):253–272

    Google Scholar 

  • Tornabene L, Baldwin CC (2017) A new mesophotic goby, Palatogobius incendius (Teleostei: Gobiidae), and the first record of invasive lionfish preying on undescribed biodiversity. PLoS ONE 12(5):e0177179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tornabene L, Van Tassell JL, Robertson DR, Baldwin CC (2016a) Repeated invasions into the twilight zone: evolutionary origins of a novel assemblage of fishes from deep Caribbean reefs. Mol Ecol 25(15):3662–3682

    Article  PubMed  Google Scholar 

  • Tornabene L, Robertson DR, Baldwin CC (2016b) Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean. ZooKeys 596:143–156

    Article  Google Scholar 

  • Turner JA, Babcock RC, Hovey R, Kendrick GA (2017) Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J Mar Sci 74(9):2309–2320

    Article  Google Scholar 

  • Tyler JC, Robins RC, Smith LC, Gilmore RG (1992) Deepwater populations of the western Atlantic pearlfish Carapus bermudensis (Ophidiiformes: Carapidae). Bull Mar Sci 51(2):218–223

    Google Scholar 

  • Tzimoulis P (1970) 300 feet on computerized scuba. Skin Diver 19(9):28–33

    Google Scholar 

  • Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B (2014) Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodiv Rec 7:e68

    Article  Google Scholar 

  • Walsh F, Tea YK, Tanaka H (2017) Cirrhilabrus efatensis, a new species of wrasse (Teleostei: Labridae) from Vanuatu, South Pacific Ocean. J Ocean Sci Found 26:68–79

    Google Scholar 

  • Weiss KR (2017) Into the twilight zone: naturalist Richard Pyle explores the mysterious, dimly lit realm of deep coral reefs. Science 355(6328):900–904

    Article  CAS  PubMed  Google Scholar 

  • Winterbottom R (2017) Two new species of Trimma (Pisces; Gobiidae) from Fiji, southwestern Pacific Ocean. Zootaxa 4269(4):559–570

    Article  PubMed  Google Scholar 

  • Wolanski E, Colin P, Naithani J, Deleersnijder E, Golbuu Y (2004) Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuar Coast Shelf Sci 60(4):705–716

    Google Scholar 

Download references

Acknowledgments

We are grateful to our employers (Bishop Museum, NOAA, Hawaiʻi Institute of Marine Biology, and the California Academy of Sciences) for allowing us to pursue our own passions for MCE research, even when it seemed like a crazy idea. Much of this chapter has drawn from data downloaded from GBIF, which was provided by 182 different datasets submitted by 110 institutions, especially the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Census of Marine Life (CoML), the Australian Institute of Marine Science (AIMS), the US National Museum of Natural History (USNM), the South African Environmental Observation Network (SAEON), Explorer’s Log, and the Bernice P. Bishop Museum, which collectively contributed over 70% of the MCE fish data. Other individuals, who have contributed in substantial ways to both the content of this chapter and the exploration and documentation of MCE fishes in general, include John E. Randall, Brian D. Greene, John L. Earle, and Brian W. Bowen. We especially wish to thank Kimberly A. Puglise for providing excellent and extremely helpful editorial assistance on this chapter.

Finally, we are extremely indebted to the true pioneers of MCE fish exploration and documentation, particularly John E. “Jack” Randall, Walter A. Starck II, and Patrick L. Colin, whose forward-looking vision, dogged determination, and brilliant insights forged the path that we now gratefully follow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Pyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pyle, R.L., Kosaki, R.K., Pinheiro, H.T., Rocha, L.A., Whitton, R.K., Copus, J.M. (2019). Fishes: Biodiversity. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_40

Download citation

Publish with us

Policies and ethics