Skip to main content

Reef-Building Corals of the Upper Mesophotic Zone of the Central Indo-West Pacific

  • Chapter
  • First Online:
Book cover Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Species composition, habitat preferences, and community structure of zooxanthellate scleractinian corals in the upper mesophotic zone (UMZ, 30–60 m depth) of the central Indo-West Pacific (IWP) are described. A total of 340 species were recorded from 287 sites from the Andaman Sea across the Coral Triangle to Micronesia and Solomon Islands. This represents almost half of the reef-building coral species present in the central IWP, yet is far from complete. Species were categorized as either UMZ specialists (9 spp.), depth generalists (57 spp.), or with habitat preferences for the lower reef slope (63 spp.), mid-lower slope (172 spp.), or shallow slope (39 spp.). The five most common species in the UMZ were depth generalists (massive Porites spp.) or species that more commonly occur on mid-lower or lower reef slopes above the UMZ, such as Pachyseris speciosa, Acropora granulosa, Oxypora lacera, and Seriatopora hystrix. Only one of the ten most common corals, Acropora elegans, is an UMZ specialist. Percentages of species occurring in the UMZ ranged widely among genera, being highest in Euphyllia (100%), Leptoseris (92%), and Cycloseris (90%) and lower for speciose IWP genera Acropora (47%), Montipora (53%), and Porites (46%). Five broad, mid-lower slope coral communities extended into the UMZ, where seven coral assemblages were defined, each with greater or lesser biogeographic fidelity. We assess our findings in relation to the life histories of the species present and place these in the broader context of the “deep reef refugia” hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252(2):221–253

    Article  CAS  PubMed  Google Scholar 

  • Anthony K, Larcombe P (2000) Coral reefs in turbid waters: sediment-induced stresses in corals and likely mechanisms of adaptation. In: Proceedings of the 9th International Coral Reef Symposium, vol I, Bali, 2000, p 239–244

    Google Scholar 

  • Barkman JJ, Doing H, Segal S (1964) Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot Neerlandica 13(3):394–419

    Article  Google Scholar 

  • Benzoni F, Stefani F, Stolarski J, Pichon M, Mitta G, Galli P (2007) Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 76(1):35–54

    Article  Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F, Reijnen BT, Montano S (2012a) Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): lost mushroom corals find their way home. Contrib Zool 81(3):125–146

    Article  Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F, Stolarski J (2012b) Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Syst Biodivers 10(4):417–433

    Article  Google Scholar 

  • Best MB, Hoeksema BW, Moka W, Moll H, Sutarna IN (1989) Recent scleractinian coral species collected during the Snellius-II Expedition in Eastern Indonesia. Neth J Sea Res 23(2):107–115

    Google Scholar 

  • Birkeland C, Miller MW, Piniak GA, Eakin CM, Weijerman M, McElhany P, Dunlap M, Brainard RE (2013) Safety in numbers? Abundance may not safeguard corals from increasing carbon dioxide. Bioscience 63(12):967–974

    Article  Google Scholar 

  • Bongaerts P, Smith TB (2019) Beyond the ‘deep reef refuge’ hypothesis: a conceptual framework to characterize persistence at depth. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 881–895

    Chapter  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29(2):309–327

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Hay KB, van Oppen MJ, Hoegh-Guldberg O, Dove S (2011) Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol Biol 11(1):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O (2015) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3(2):e1602373

    Article  PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31(1):179–189

    Article  Google Scholar 

  • Bridge TC, Hughes TP, Guinotte JM, Bongaerts P (2013) Call to protect all coral reefs. Nat Clim Chang 3(6):528

    Article  Google Scholar 

  • Bridge TCL, Beaman RJ, Bongaerts P, Muir PR, Ekins M, Sih T (2019) The Great Barrier Reef and Coral Sea. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 351–367

    Chapter  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linnean Soc 166:465–529

    Article  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321(5888):560–563

    Article  CAS  PubMed  Google Scholar 

  • Crandall J, Teece M, Estes B, Manfrino C, Ciesla J (2016) Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J Exp Mar Biol Ecol 474:133–141

    Article  CAS  Google Scholar 

  • DeVantier L, Endean R (1989) Observations of colony fission following ledge formation in massive reef corals of the genus Porites. Mar Ecol Prog Ser Oldendorf 58(1):191–195

    Article  Google Scholar 

  • DeVantier L, Turak E (2017) Species richness and relative abundance of reef-building corals in the Indo-West Pacific. Diversity 9(3):25

    Article  Google Scholar 

  • DeVantier LM, De’Ath G, Done TJ, Turak E (1998) Ecological assessment of a complex natural system: a case study from the Great Barrier Reef. Ecol Appl 8(2):480–496

    Article  Google Scholar 

  • Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1(2):95–107

    Article  Google Scholar 

  • Done T, Turak E, Wakeford M, DeVantier L, McDonald A, Fisk D (2007) Decadal changes in turbid-water coral communities at Pandora Reef: loss of resilience or too soon to tell? Coral Reefs 26(4):789–805

    Article  Google Scholar 

  • Dustan P, Lang JC (2019) Discovery Bay, Jamaica. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 85–109

    Chapter  Google Scholar 

  • Englebert N, Bongaerts P, Muir PR, Hay KB, Pichon M, Hoegh-Guldberg O (2017) Lower mesophotic coral communities (60–125 m depth) of the Northern Great Barrier Reef and Coral Sea. PLoS ONE 12(2):e0170336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes L (1990) Effect of the distribution and density of benthic target organisms on manta tow estimates of their abundance. Coral Reefs 9(3):161–165

    Article  Google Scholar 

  • Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang Y-Y, Chen C, Dai C-F, Iwao K, Sheppard C (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS ONE 3(9):e3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsburg RN, Smith FGW (1995) Proceedings of the colloquium on global aspects of coral reefs: health, hazards, and history, June 1993. Oceanogr Lit Rev 42(8):673

    Google Scholar 

  • Glynn PW (1974) Rolling stones among the Scleractinia: mobile coralliths in the Gulf of Panama. In: Proceedings of the 2nd International Coral Reef Symposium, vol 2, Brisbane, 1974. pp 183–198

    Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2(6):495–509

    Article  Google Scholar 

  • Hammer Ø, Harper D, Ryan P (2001) Paleontological statistics software: package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Harris PT, Bridge TCL, Beaman RJ, Webster JM, Nichol SL, Brooke BP (2013) Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J Mar Sci 70(2):284–293

    Article  Google Scholar 

  • Head SM (1983) An undescribed species of Merulina and a new genus and species of siderastreid coral from the Red Sea. J Nat Hist 17(3):419–435

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema BW (1989) Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zool Verh 254(1):1–295

    Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopley D (1982) The geomorphology of the Great Barrier Reef: quaternary development of coral reefs. Wiley, New York

    Google Scholar 

  • Hopley D, Parnell K, Isdale P (1989) The Great Barrier Reef Marine Park: dimensions and regional patterns. Geogr Res 27(1):47–66

    Google Scholar 

  • Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, Chou LM, Fukami H, Licuanan WY, Lovell ER (2014a) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scr 43(5):531–548

    Article  Google Scholar 

  • Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014b) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linnean Soc 17(2):277–355

    Article  Google Scholar 

  • Iluz D, Dubinsky Z (2015) Coral photobiology: new light on old views. Zoology 118(2):71–78

    Article  PubMed  Google Scholar 

  • Iwase A, Sakai K, Suzuki A, van Woesik R (2008) Phototropic adjustment of the foliaceous coral Echinopora lamellosa in Palau. Estuar Coast Shelf Sci 77(4):672–678

    Article  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongereren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest, zooxanthellate scleractinian corals in the world? Coral Reefs 25(2):254

    Article  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29(2):255–275

    Google Scholar 

  • Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D (2019) Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 801–828

    Chapter  Google Scholar 

  • Kumaran S, Perumal B, Davison G, Ainuddin A, Lee M, Bruijnzeel L, Scatena F, Hamilton L (2010) Tropical montane cloud forests in Malaysia: current state of knowledge. In: Bruijnzeel L, Scatena F, Hamilton L (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 113–120

    Google Scholar 

  • Laverick JH, Andradi-Brown DA, Exton DA, Bongaerts P, Bridge TC, Lesser MP, Pyle RL, Slattery M, Wagner D, Rogers AD (2016) To what extent do mesophotic coral ecosystems and shallow reefs share species of conservation interest? Environ Evid 5(1):16

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91(4):990–1003

    Article  PubMed  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35(1):1–9

    Article  Google Scholar 

  • Miller IR, De’ath G (1996) Effects of training on observer performance in assessing benthic cover by means of the manta tow technique. Mar Freshw Res 47(1):19–26

    Article  Google Scholar 

  • Muir PR, Pichon M (2019) Biodiversity of reef-building, scleractinian corals. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 589–620

    Chapter  Google Scholar 

  • Muir P, Wallace C (2015) A rare ‘deep-water’ coral assemblage in a shallow lagoon in Micronesia. Mar Biodivers

    Google Scholar 

  • Muir P, Wallace C, Bridge TC, Bongaerts P (2015) Diverse staghorn coral fauna on the mesophotic reefs of North-east Australia. PLoS ONE 10(2):e0117933

    Google Scholar 

  • Muir P, Pichon M, Squire L, Wallace C (2018) Acropora tenella, a zooxanthellate coral extending to 110-m depth in the Northern Coral Sea. Mar Biodivers

    Google Scholar 

  • Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66(1):225–239

    Google Scholar 

  • Oliver T, Palumbi S (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30(2):429–440

    Article  Google Scholar 

  • Pochon X, Forsman ZH, Spalding HL, Padilla-Gamiño JL, Smith CM, Gates RD (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawaiʻi. R Soc Open Sci 2(2):140351

    Google Scholar 

  • Prasetia R, Sinniger F, Harii S (2016) Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35(1):53–62

    Article  Google Scholar 

  • Prasetia R, Sinniger F, Hashizume K, Harii S (2017) Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLoS ONE 12(5):e0177034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29(2):361–367

    Article  Google Scholar 

  • Roth MS (2014) The engine of the reef: photobiology of the coral–algal symbiosis. Front Microbiol 5:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AM, Andreakis N (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32(1):161–172

    Article  Google Scholar 

  • Serrano X, Baums I, O’reilly K, Smith T, Jones R, Shearer T, Nunes F, Baker A (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23(17):4226–4240

    Article  CAS  PubMed  Google Scholar 

  • Sheppard CR (1982) Coral populations on reef slopes and their major controls. Mar Ecol Prog Ser 7:83–115

    Article  Google Scholar 

  • Sheppard CR, Sheppard AL (1991) Corals and coral communities of Arabia. Fauna Saudi Arab 12(1–170):310

    Google Scholar 

  • Shlesinger T, Loya Y (2019) Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 653–666

    Chapter  Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2017) Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99(2):421–437

    Article  Google Scholar 

  • Sieh K, Natawidjaja DH, Meltzner AJ, Shen C-C, Cheng H, Li K-S, Suwargadi BW, Galetzka J, Philibosian B, Edwards RL (2008) Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322(5908):1674–1678

    Google Scholar 

  • Smith TB, Glynn PW, Maté JL, Toth LT, Gyory J (2014) A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95(6):1663–1673

    Article  PubMed  Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22(8):2756–2765

    Article  PubMed  Google Scholar 

  • Smith TB, Holstein DM, Ennis RS (2019) Disturbance in mesophotic coral ecosystems and linkages to conservation and management. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 911–929

    Chapter  Google Scholar 

  • Turak E, DeVantier L (2005) Reef-building corals and coral communities of Pohnpei, Federated States of Micronesia: rapid ecological assessment of biodiversity and status. Conservation Society of Pohnpei, Micronesia

    Google Scholar 

  • Turak E, DeVantier LM (2011) Field guide to reef-building corals of Brunei Darussalam. Department of Fisheries, Brunei Darussalam

    Google Scholar 

  • Turak E, Veron JEN, Sanpanich K (2005) Post tsunami coral reef surveys of Thailand North Andaman coast: coral reef status. In: Allen GR, Stone GS (eds) Rapid assessment survey of tsunami-affected reefs of Thailand. New England Aquarium Technical Report 02–05. New England Aquarium, Boston, pp 16–30

    Google Scholar 

  • van der Maarel E (1980) Transformation of cover-abundance values in phytosociology and its effects on community similarity. In: van der Maarel E, Orlóci L, Pignatti S (eds) Data-processing in phytosociology: report on the activities of the Working-group for Data-processing in Phytosociology of the International Society for Vegetation Science, 1969–1978. Springer, Dordrecht, pp 133–150. https://doi.org/10.1007/978-94-009-9194-1_17

    Google Scholar 

  • Van Oppen MJH, Bongaerts PIM, Underwood JN, Peplow LM, Cooper TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20(8):1647–1660

    Article  PubMed  Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. Hawaiʻi University Press, Hawaiʻi

    Google Scholar 

  • Veron JEN (1993) A biogeographic database of hermatypic corals, species of the central Indo-Pacific, genera of the world, vol 10. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN (1995) Corals in space and time. Cornell University Press, New York

    Google Scholar 

  • Veron JEN (2000) Corals of the world, vol 1,2,3. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN (2013) Overview of the taxonomy of zooxanthellate Scleractinia. Zool J Linnean Soc 169(3):485–508

    Article  Google Scholar 

  • Veron JEN (2015) The potential of type species to destabilise the taxonomy of zooxanthellate Scleractinia. Zootaxa 4048(3):433–435

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN, Pichon M (1976) Scleractinia of Eastern Australia. Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae, vol 1. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Pichon M (1980) Scleractinia of Eastern Australia. Part III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae, vol 4. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Pichon M (1982) Scleractinia of Eastern Australia. Part IV. Family Poritidae, vol 5. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Stafford-Smith MG (2002) Coral ID. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Wallace C (1984) Scleractinia of Eastern Australia. Part V. Family Acroporidae, vol 6. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Pichon M, Wijsman-Best M (1977) Scleractinia of Eastern Australia. Part II. Families Faviidae, Trachyphylliidae, vol 3. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron J, Stafford-Smith M, DeVantier L, Turak E (2015) Overview of distribution patterns of zooxanthellate Scleractinia. Front Mar Sci 1:81

    Article  Google Scholar 

  • Veron JEN, Stafford-Smith MG, Turak E, DeVantier LM (2016) Corals of the world, version 0.01 (Beta) 2017. http://www.coralsoftheworld.org. Accessed 20 Jan 2018

  • Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B (2014) Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodivers Rec 7:e68

    Article  Google Scholar 

  • Wallace CC (1999) Staghorn corals of the world. A revision of the genus Acropora. CSIRO Publishing, Collingwood

    Book  Google Scholar 

  • Wallace CC, Wolstenholme J (1998) Revision of the coral genus Acropora (Scleractinia: Astrocoeniina: Acroporidae) in Indonesia. Zool J Linnean Soc 123(3):199–384

    Article  Google Scholar 

  • Wallace CC, Done BJ, Muir PR (2012) Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Mem Qld Mus Nat 57:1–255

    Google Scholar 

  • Willis BL, Ayre DJ (1985) Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia 65(4):516–525

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tom Bridge for inviting us to write this chapter and for providing valued editorial comments, along with Terry Done and anonymous reviewers. We also thank Kimberly Puglise and Yossi Loya for valued comments. Mark Erdmann kindly provided photos and specimens of corals from the mesophotic zone, and Can Bilgin provided statistical assistance. We are very grateful for the support of the Museum of Tropical Queensland. This work, spanning some 16 years of field research and 1000 h of diving, is a subset of a large set of REA surveys (DeVantier and Turak 2017) and has been supported over the years by numerous governments, organizations, and individuals. These include Conservation International and The Nature Conservancy in many locations including Indonesia, the Philippines, Papua New Guinea, Palau, the Federated States of Micronesia, and Solomon Islands; IUCN and the El Nido Foundation in the Philippines; the Fisheries Department in Brunei Darussalam; New England Aquarium in Thailand; the International Ocean Institute in Indonesia; the National Resource Management and North Sulawesi Watersports Association in Indonesia; Tom Bridge; Tracy Ainsworth; and the Museum of Tropical Queensland for mesophotic surveys to the northern GBR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Turak .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table 34.S1

Summary of survey locations. Reef types: F fringing, P patch, Pl platform, B barrier, A atoll. Ecoregion (ER) names and numbers are from Corals of the World (Veron et al. 2016) (XLSX 10 kb)

Table 34.S2

List of 340 species recorded in the UMZ from 287 sites in 23 survey locations in 18 ecoregions and their coral community and assemblage details (XLSX 107 kb)

Table 34.S3

Site characteristic details, top 20 most abundant deep (>10 m) and most common (>30 m) hard coral species for the five coral community types. abn is cumulative abundance in all sites where the species was recorded; sites is the total number of sites where the species was recorded. Color coding of the five communities correspond to Figs. 34.4, 34.5 and 34.6 (XLSX 24 kb)

Table 34.S4

Site characteristic details and top 20 most common hard coral species found in the seven UMZ coral assemblages. sites is the total number of sites where the species was recorded. Color coding of the seven assemblages correspond to Figs. 34.8 and 34.9 (XLSX 18 kb)

Table 34.S5

Site characteristic details and top 20 most common hard coral species found in the five UMZ coral sub-assemblages. sites: the total number of sites where the species was recorded. Color coding of the five sub-assemblages correspond to Figs. 34.8 and 34.10 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turak, E., DeVantier, L. (2019). Reef-Building Corals of the Upper Mesophotic Zone of the Central Indo-West Pacific. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_34

Download citation

Publish with us

Policies and ethics