Skip to main content

Large Benthic Foraminifera in Low-Light Environments

  • Chapter
  • First Online:

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Large benthic foraminifera (LBF) are an important component of low-light, mesophotic tropical marine environments, including coral ecosystems. LBF occur from nearshore, shallow coastal environments experiencing high-terrestrial runoff to the deep-shelf edge in transparent, oceanic waters. Here, I compare the LBF in both these low-light habitats. In both reef-associated and interreef environments, species show differing tolerance to both light intensity and terrestrial influx. In interreef environments, LBF can alter the benthic environment from muddy to coarse carbonate grains. Their depth distribution is truncated by seasonal variability in water transparency, particularly for the deepest-living species. This is because shallower-dwelling species are more likely to experience suitable environmental conditions throughout the year and can position themselves in microhabitats experiencing higher light irradiance during periods of low light intensity, thus managing to maintain their symbionts. In contrast, deep-living species are less flexible because light intensity in deep water is ubiquitously low; consequently, deep-dwelling LBF live predominantly on or very close to the water-seafloor interface. In coastal environments, zonation or habitat fractionating, i.e., the differentiation of assemblages on the reef slope, increases from nearshore to offshore reefs, primarily due to species-specific differences in tolerance to nutrients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth Sci Rev 67(3–4):219–265

    Article  Google Scholar 

  • Becking LE, Cleary DFR, de Voogd NJ, Renema W, Beer M, van Soest RW, Hoeksema BW (2006) Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia. Mar Ecol 27:76–88

    Article  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bridge TCL, Done TJ, Beaman RJ, Friedman A, Williams SB, Pizarro O, Webster JM (2011) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30:143–153

    Article  Google Scholar 

  • Cacciapaglia C, van Woesik R (2016) Climate-change refugia: shading reef corals by turbidity. Glob Chang Biol 22:1145–1154

    Article  Google Scholar 

  • Cleary DFR, Polónia AR, Renema W, Hoeksema BW, Wolstenholme J, Tuti Y, de Voogd NJ (2014) Coral reefs next to a major conurbation: a study of temporal change (1985–2011) in coral cover and composition in the reefs of Jakarta, Indonesia. Mar Ecol Prog Ser 501:89–98

    Article  Google Scholar 

  • Cunningham A, Ramage L, McKee D (2013) Relationships between inherent optical properties and the depth of penetration of solar radiation in optically complex coastal waters. J Geophys Res Oceans 118:2310–2317

    Article  Google Scholar 

  • de Goeij JM, van Duyl FC (2007) Coral cavities are sinks of dissolved organic carbon (DOC). Limnol Oceanogr 52:2608–2617

    Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110

    Article  CAS  Google Scholar 

  • Doron M, Babin M, Mangin A, Hembise O (2007) Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. J Geophys Res Oceans 112(C6)

    Google Scholar 

  • Drew EA (1983) Light. In: Earll R, Erwin DG (eds) Sublittoral ecology: the ecology of the shallow sublittoral benthos. Clarendon Press, Oxford, pp 10–57

    Google Scholar 

  • Erftemeijer PL, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64:1737–1765

    Article  CAS  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    Article  CAS  Google Scholar 

  • Fay SA, Weber MX, Lipps JH (2009) The distribution of Symbiodinium diversity within individual host foraminifera. Coral Reefs 28:717–726

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Hallock P (1981a) Light dependence in Amphistegina. J Foraminifer Res 11:42–48

    Article  Google Scholar 

  • Hallock P (1981b) Algal symbiosis: a mathematical analysis. Mar Biol 62:249–255

    Article  Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471

    Article  Google Scholar 

  • Hallock P (2001) Coral reefs, carbonate sedimentation, nutrients, and global change. In: Stanley GD (ed) The history and sedimentology of ancient reef ecosystems. Kluwer Academic/Plenum Publishers, New York, pp 387–427

    Chapter  Google Scholar 

  • Hallock P (2012) The FoRAM index revisited: uses, challenges, and limitations. In: Proceedings of the 12th International Coral Reef Symposium. Cairns, Australia, pp 9–13

    Google Scholar 

  • Hallock P, Forward LB, Hansen HJ (1986) Influence of environment on the test shape of Amphistegina. J Foraminifer Res 16:224–231

    Article  Google Scholar 

  • Hallock P, Lidz BH, Cockey-Burkhard EM, Donnelly KB (2003) Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM index. In: Coastal monitoring through partnerships. Springer, Netherlands, pp 221–238

    Chapter  Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29:247–251

    Article  Google Scholar 

  • Hoeksema BW (2012) Distribution patterns of mushroom corals (Scleractinia: Fungiidae) across the Spermonde Shelf, South Sulawesi. Raffles Bull Zool 60:183–212

    Google Scholar 

  • Hohenegger J (2004) Depth coenoclines and environmental considerations of western Pacific larger foraminifera. J Foraminifer Res 34:9–33

    Article  Google Scholar 

  • Hohenegger J, Yordanova E, Hatta A (2000) Remarks on West Pacific Nummulitidae (Foraminifera). J Foraminifer Res 30:3–28

    Article  Google Scholar 

  • Hollaus SS, Hottinger L (1997) Temperature dependance of endosymbiotic relationships? Evidence from the depth range of mediterranean Amphistegina lessonii (Foraminifera) truncated by the thermocline. Eclogae Geol Helv 90:591–598

    Google Scholar 

  • Holzmann M, Berney C, Hohenegger J (2006) Molecular identification of diatom endosymbionts in nummulitid foraminifera. Symbiosis 4:93–101

    Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huston M (1985) Variations in coral growth with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Article  Google Scholar 

  • Johnson JA, Perry CT, Smithers SG, Morgan KM, Santodomingo N, Johnson KG (2017) Palaeoecological records of coral community development on a turbid, nearshore reef complex: baselines for assessing ecological change. Coral Reefs 36:685–700

    Article  Google Scholar 

  • Jokiel PL (2011) The reef coral two compartment proton flux model: a new approach relating tissue-level physiological processes to gross corallum morphology. J Exp Mar Biol Ecol 409:1–12

    Article  CAS  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LA (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Koba M (1977) Distribution and environment of recent Cycloclypeus. Sci Rep Tohoku Univ 7:283–311

    Google Scholar 

  • Krüger R, Röttger R, Lietz R, Hohenegger J (1997) Biology and reproductive processes of the larger foraminiferan Cycloclypeus carpenteri (Protozoa, Nummulitidae). Arch Protistenkd 147:307–321

    Article  Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46:105–126

    Google Scholar 

  • Lee JJ, Anderson OR (1991) Symbiosis in foraminifera. In: Lee JJ, Anderson OR (eds) Biology of foraminifera, vol 1. Academic, London, pp 157–220

    Google Scholar 

  • Lee JJ, McEnery ME, Kahn EG, Schuster FL (1979) Symbiosis and the evolution of larger foraminifera. Micropaleontology 25:118–140

    Article  Google Scholar 

  • Lee JJ, Sang K, ter Kuile B, Strauss E, Lee PJ, Faber WW Jr (1991) Nutritional and related experiments on laboratory maintenance of three species of symbiont-bearing, large foraminifera. Mar Biol 109:417–425

    Article  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Leutenegger S (1984) Symbiosis in benthic foraminifera: specificity and host adaptations. J Foraminifer Res 14:16–35

    Article  Google Scholar 

  • McNeil MA, Webster JM, Beaman RJ, Graham TL (2016) New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35:1343–1355

    Article  Google Scholar 

  • Moll H (1983) Zonation and diversity of scleractinia on reefs of SW Sulawesi, Indonesia. Dissertation, State University of Leiden

    Google Scholar 

  • Momigliano P, Uthicke S (2013) Symbiosis in a giant protist (Marginopora vertebralis, Soritinae): flexibility in symbiotic partnerships along a natural temperature gradient. Mar Ecol Prog Ser 491:33–46

    Article  Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

    Article  Google Scholar 

  • Morgan KM, Perry CT, Johnson JA, Smithers SG (2017) Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front Mar Sci 4:224–230

    Google Scholar 

  • Morsilli M, Bosellini FR, Pomar L, Hallock P, Aurell M, Papazzoni CA (2012) Mesophotic coral buildups in a prodelta setting (late Eocene, Southern Pyrenees, Spain): a mixed carbonate–siliciclastic system. Sedimentology 59:766–794

    Article  Google Scholar 

  • Muller-Parker G, D’Elia CF (1997) Interactions between corals and their symbiotic algae. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 96–113

    Chapter  Google Scholar 

  • Nobes K, Uthicke S, Henderson R (2008) Is light the limiting factor for the distribution of benthic symbiont bearing foraminifera on the Great Barrier Reef? J Exp Mar Biol Ecol 363:48–57

    Article  Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni JF, Hallock P (2001a) Molecular identification of algal endosymbionts in large miliolid foraminifera: 1. Chlorophytes. J Eukaryot Microbiol 48:362–367

    Article  CAS  Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni JF, Pochon X, Lee JJ (2001b) Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates. J Eukaryot Microbiol 48:368–373

    Article  CAS  Google Scholar 

  • Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432

    Article  Google Scholar 

  • Perry CT, Smithers SG, Palmer SE, Larcombe P, Johnson KG (2008) 1200 year paleoecological record of coral community development from the terrigenous inner shelf of the Great Barrier Reef. Geology 36:691–694

    Article  Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Article  Google Scholar 

  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Pet Geol 83:261–304

    Article  CAS  Google Scholar 

  • Potts DC, Jacobs JR (2000) Evolution of reef-building scleractinian corals in turbid environments: a paleo-ecological hypothesis. Proc 9th Int Coral Reef Symp (Bali, 2000) 1:249–254

    Google Scholar 

  • Prazeres M, Uthicke S, Pandolfi JM (2016) Changing light levels induce photo-oxidative stress and alterations in shell density of Amphistegina lobifera (Foraminifera). Mar Ecol Prog Ser 549:69–78

    Article  CAS  Google Scholar 

  • Renema W (2006a) Habitat variables determining the occurrence of large benthic foraminifera in the Berau area (East Kalimantan, Indonesia). Coral Reefs 25:351–359

    Article  Google Scholar 

  • Renema W (2006b) Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shelf off East Kalimantan, Indonesia. Mar Micropaleontol 58(2):73–82

    Article  Google Scholar 

  • Renema W (2008) Habitat selective factors influencing the distribution of larger benthic foraminiferal assemblages over the Kepulauan Seribu. Mar Micropaleontol 68:286–298

    Article  Google Scholar 

  • Renema W (2018) Terrestrial influence as a key driver of spatial variability in large benthic foraminiferal assemblage composition in the Central Indo-Pacific. Earth Sci Rev 177:514–544

    Article  Google Scholar 

  • Renema W, Troelstra SR (2001) Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia). Palaeogeogr Palaeoclimatol Palaeoecol 175:125–146

    Article  Google Scholar 

  • Renema W, Beaman RJ, Webster JM (2013) Mixing of relict and modern tests of larger benthic foraminifera on the Great Barrier Reef shelf margin. Mar Micropaleontol 101:68–75

    Article  Google Scholar 

  • Richards ZT, Garcia RA, Wallace CC, Rosser NL, Muir PR (2015) A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia). PLoS ONE 10:e0117791

    Article  Google Scholar 

  • Roff GR, Clark TR, Reymond CE, Zhao J-X, Feng Y, McCook LJ, Done TJ, Pandolfi JM (2013) Palaeoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settlement. Proc R Soc Lond B 280:20122100

    Article  Google Scholar 

  • Rosen B, Aillud G, Bosellini FR (2000) Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity. Proc 9th Int Coral Reef Symp (Bali 2000) 1:255–264

    Google Scholar 

  • Röttger R (1976) Ecological observations on Heterostegina depressa (Foraminifera, Nummulitidae) in the laboratory and in natural habitat. Mar Sediment Spec Publ 1:75–80

    Google Scholar 

  • Röttger R, Irwan A, Schmaljohan R, Franzisket L (1980) Growth of the symbiont-bearing foraminifera Amphistegina lessonii d’Orbigny and Heterostegina depressa d’Orbigny (Protozoa). In: Schwemmler W, HEA S (eds) Endocytobiology, endosymbiosis and cell biology. Walter de Gruyter & Co, Berlin, pp 125–132

    Google Scholar 

  • Roy KJ, Smith SV (1971) Sedimentation and coral reef development in turbid water: Fanning Lagoon. Pac Sci 25:234–248

    Google Scholar 

  • Ryan EJ, Smithers SG, Lewis SE, Clark TR, Zhao J-X (2016) Chronostratigraphy of Bramston Reef reveals a long-term record of fringing reef growth under muddy conditions in the central Great Barrier Reef. Palaeogeogr Palaeoclimatol Palaeoecol 441:734–747

    Article  Google Scholar 

  • Santodomingo N, Renema W, Johnson KG (2016) Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia). Coral Reefs 35:765–781

    Article  Google Scholar 

  • Schmidt C, Heinz P, Kucera M, Uthicke S (2011) Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol Oceanogr 56:1587–1602

    Article  Google Scholar 

  • ter Kuile B, Erez J (1984) In situ growth rate experiments on the symbiont-bearing Foraminifera Amphistegina lobifera and Amphisorus hemprichii. J Foraminifer Res 14:262–276

    Article  Google Scholar 

  • Uthicke S, Altenrath C (2010) Water column nutrients control growth and C:N ratios of symbiont-bearing benthic foraminifera on the Great Barrier Reef, Australia. Limnol Oceanogr 55:1681–1696

    Article  CAS  Google Scholar 

  • Uthicke S, Nobes K (2008) Benthic foraminifera as ecological indicators for water quality on the Great Barrier Reef. Estuar Coast Shelf Sci 78:763–773

    Article  Google Scholar 

  • van Woesik R, Franklin EC, O’Leary J, McClanahan TR, Klaus JS, Budd AF (2012) Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc R Soc B 279(1737):2448–2456

    Google Scholar 

  • Walker RA, Hallock P, Torres JJ, Vargo GA (2011) Photosynthesis and respiration in five species of benthic Foraminifera that host algal endosymbionts. J Foraminifer Res 41:314–325

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Williams DE, Hallock P (2004) Bleaching in Amphistegina gibbosa d’Orbigny (Class Foraminifera): observations from laboratory experiments using visible and ultraviolet light. Mar Biol 145:641–649

    Google Scholar 

  • Wilson MEJ (2002) Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development. Sediment Geol 147:295–428

    Article  CAS  Google Scholar 

  • Wilson MEJ (2005) Development of equatorial delta-front patch reefs during the Neogene, Borneo. J Sediment Res 75:114–133

    Article  Google Scholar 

  • Ziegler M, Uthicke S (2011) Photosynthetic plasticity of endosymbionts in larger benthic coral reef foraminifera. J Exp Mar Biol Ecol 407:70–80

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Martina de Freitas Prazeres and an anonymous reviewer, as well as the editors for their constructive comments which improved the original version of the manuscript tremendously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Renema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renema, W. (2019). Large Benthic Foraminifera in Low-Light Environments. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_31

Download citation

Publish with us

Policies and ethics