Skip to main content

The Bahamas and Cayman Islands

  • Chapter
  • First Online:

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

As shallow coral reefs worldwide are increasingly degraded by natural and anthropogenic stressors, mesophotic coral ecosystems (MCEs; ~30–150 m) represent a potential refugia that may act as seed banks for coral reef resilience. This is particularly true in the Caribbean Basin where phase shifts from coral dominance to either algal or sponge dominance have been reported with increasing frequency. However, coral reefs of the Bahamas and Cayman Islands are less impacted than other Caribbean reefs, and they offer an opportunity to assess the ecology of MCEs and the connectivity between shallow and mesophotic coral reefs. The MCEs of the Bahamas and Cayman Islands are composed of a shallow sloped upper zone (~30–60 m) and a vertical lower zone (60–100+ m). The upper MCE zone has similar biodiversity and percent cover to nearby shallow reefs, but the lower MCE zone is dominated by sponges, and it includes many species not found on shallow reefs. The ecological importance of the mesophotic sponges is unequivocal; they provide habitat for a variety of species and play a significant role in benthic-pelagic coupling via filtration of bacterioplankton, and their symbiotic microbes are sources of nitrogen cycling. Moreover, our data indicate that sponge diversity on MCEs in the Bahamas and the Cayman Islands is more similar to one another than the sponge diversity among shallow and mesophotic reefs in each region. Threats to shallow reefs (e.g., climate change and invasive species) may also impact MCEs; conservation will require mitigation of these stressors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andradi-Brown DA, Vermeij MJ, Slattery M et al (2017) Large-scale invasion of western Atlantic mesophotic reefs by lionfish potentially undermines culling-based management. Biol Invasions 19:939–954

    Google Scholar 

  • Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res I 48:2185–2194

    Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I et al (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Google Scholar 

  • Archer SK, Allgeier JE, Semmens BX et al (2015) Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling. Coral Reefs 34:19–23

    Google Scholar 

  • Bak RP, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Google Scholar 

  • Baker EK, Harris PT (eds) (2016) Mesophotic coral ecosystems: a lifeboat for coral reefs? United Nations Environment Programme and GRID-Arendal, Nairobi

    Google Scholar 

  • Ballantine DL, Ruiz Torres H, Aponte NE (2016) Mesophotic, coral reef-associated, marine algal flora of Puerto Rico, Caribbean Sea, Smithson Contrib Botany (USA) No. 105. Smithsonian Institution Scholarly Press, Washington, DC

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM et al (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Google Scholar 

  • Bongaerts P, Sampayo EM, Bridge TC et al (2011) Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser 439:117–126

    Google Scholar 

  • Bongaerts P, Muir P, Englebert N et al (2013) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935

    Google Scholar 

  • Bongaerts P, Frade PR, Hay KB et al (2015) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    Google Scholar 

  • Brakel WH (1979) Small-scale spatial variation in light available to coral reef benthos: quantum irradiance measurements from a Jamaican reef. Bull Mar Sci 29:406–413

    Google Scholar 

  • Brazeau DA, Lesser MP, Slattery M (2013) Genetic structure in the coral Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8(5):e65845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge TCL, Done TJ, Beaman RJ et al (2011) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30:143–153

    Google Scholar 

  • Brokovich E, Ayalon I, Einbinder S et al (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Google Scholar 

  • Bunkley-Williams LC, Morelock J, Williams EH (1991) Lingering effects of the 1987 mass bleaching of Puerto Rican coral reefs in mid to late 1988. J Aquat Anim Health 3:242–247

    Google Scholar 

  • Clarke KR, Gorley RN, Somerfield PJ et al (2014) Change in marine communities: an approach to statistical analysis and interpretation, 3rd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Colin PL, Devaney DM, Hillis-Colinvaux L et al (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38:111–128

    Google Scholar 

  • Crandall JB, Teece MA, Estes BA et al (2016) Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J Exp Mar Biol Ecol 474:133–141

    CAS  Google Scholar 

  • Dahlgren CP, Buch KL, Rechisky E et al (2016) Multi-year tracking of Nassau grouper (Epinephelus striatus) spawning migrations. Mar Coast Fish 8:522–535

    Google Scholar 

  • Done TJ (1983) Coral zonation, its nature and significance. In: Barnes DJ, Clouston B (eds) Perspectives on coral reefs. AIMS, Manuka, pp 107–147

    Google Scholar 

  • Dowgiallo MJ (2004) Patterns in diversity and distribution of benthic molluscs along a depth gradient in the Bahamas. Dissertation, University of Maryland

    Google Scholar 

  • Etnoyer PJ, Wickes LN, Silva M et al (2016) Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35:77–90

    Google Scholar 

  • García-Sais JR (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29:277–288

    Google Scholar 

  • Ginsburg RN, Harris PM, Eberli GP et al (1991) The growth potential of a bypass margin, Great Bahamas Bank. J Sediment Res 61:976–987

    Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Google Scholar 

  • Goreau TF, Wells JW (1967) The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull Mar Sci 17:442–453

    Google Scholar 

  • Gruber DF, Gaffney JP, Mehr S et al (2015) Adaptive evolution of eel fluorescent proteins from fatty acid binding proteins produces bright fluorescence in the marine environment. PLoS ONE 10(11):e0140972

    PubMed  PubMed Central  Google Scholar 

  • Harmelin-Vivien ML, Laboute P (1986) Catastrophic impact of hurricanes on atoll outer reef slopes in the Tuamotu (French Polynesia). Coral Reefs 5:55–62

    Google Scholar 

  • Harris PT, Bridge TC, Beaman RJ et al (2012) Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J Mar Sci 70:284–293

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA et al (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29:247–251

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    CAS  PubMed  Google Scholar 

  • Jackson JBC, Donovan MK, Cramer KL et al (2014) Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland

    Google Scholar 

  • Kirk JT (1994) Estimation of the absorption and the scattering coefficients of natural waters by use of underwater irradiance measurements. Appl Opt 33:3276–3278

    CAS  PubMed  Google Scholar 

  • Kuhlmann DHH (1983) Composition and ecology of deep-water coral associations. Helgolander Meeresunters 36:183–204

    Google Scholar 

  • Lang JC (1975) Sclerosponges: primary framework constructors on Jamaican deep fore-reefs. J Mar Res 33:223–231

    Google Scholar 

  • Lang JC, Wicklund RI, Dill RF (1988) Depth- and habitat related bleaching of zooxanthellate reef organisms near Lee Stocking Island, Exuma Cays, Bahamas. Proc 6th Int Coral Reef Symp 39:269–274

    Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and Southeast Florida. Limnol Oceanogr 42:1119–1131

    CAS  Google Scholar 

  • Lehnert H, Fischer H (1999) Distribution patterns of sponges and corals down to 107m off north Jamaica. Mem Qld Mus 44:307–316

    Google Scholar 

  • Leichter JJ, Genovese SJ (2006) Intermittent upwelling and subsidized growth of the scleractinian coral Madracis mirabilis on the deep fore-reef slope of Discovery Bay, Jamaica. Mar Ecol Prog Ser 316:95–103

    Google Scholar 

  • Leichter JJ, Wing SR, Miller SL et al (1996) Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol Oceanogr 41:1490–1501

    CAS  Google Scholar 

  • Leichter JJ, Stewart HL, Miller SL (2003) Episodic nutrient transport to Florida coral reefs. Limnol Oceanogr 48:1394–1407

    Google Scholar 

  • Leichter JJ, Stokes MD, Genovese SJ (2008) Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser 356:123–138

    Google Scholar 

  • Lesser MP (2006) Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol 328:277–288

    Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Google Scholar 

  • Lesser MP, Slattery M (2013) Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS ONE 8(11):e79799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Google Scholar 

  • Lesser MP, Slattery M, Stat M et al (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    PubMed  Google Scholar 

  • Liddell WD, Avery WE (2000) Temporal change in hard substrate communities 10–250 m, the Bahamas. Proc 10th Int Coral Reef Symp 1:437–442

    Google Scholar 

  • Liddell WD, Ohlhorst SL (1981) Geomorphology and community composition of two adjacent reef areas, Discovery Bay, Jamaica. J Mar Res 39:791–804

    Google Scholar 

  • Liddell WD, Ohlhorst SL (1988) Hard substrata community patterns, 1–120 m, north Jamaica. PALAIOS 3:413–423

    Google Scholar 

  • Liddell WD, Avery WE, Ohlhorst SL (1997) Patterns of benthic community structure, 10–250 m, the Bahamas. Proc 8th Int Coral Reef Symp 1:437–442

    Google Scholar 

  • Lindfield SJ, Harvey ES, Halford AR et al (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35:125–137

    Google Scholar 

  • Littler MM, Littler DS, Blair SM et al (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep Sea Res Part A 33:881–892

    CAS  Google Scholar 

  • Locker SD, Armstrong RA, Battista TA et al (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29:329–345

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T et al (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • Macintyre IG (2007) Demise, regeneration, and survival of some western Atlantic reefs during the Holocene transgression. In: Aronson RB (ed) Geological approaches to coral reef ecology. Springer, New York, pp 181–200

    Google Scholar 

  • Maldonado M, Young CM (1996) Bathymetric patterns of sponge distribution on the Bahamian slope. Deep Sea Res Part I 43:897–915

    Google Scholar 

  • Mass T, Einbinder S, Brokovich E et al (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    CAS  Google Scholar 

  • McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357–367

    Google Scholar 

  • Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257–289

    CAS  PubMed  Google Scholar 

  • Menza C, Kendall M, Hile S (2008) The deeper we go the less we know. Rev Biol Trop 56:11–24

    Google Scholar 

  • Miloslavich P, Díaz JM, Klein E et al (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS ONE 5(8):e11916

    PubMed  PubMed Central  Google Scholar 

  • Morrow KM, Fiore C, Lesser M (2016) Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ Microbiol 18:2025–2038

    CAS  PubMed  Google Scholar 

  • Muscatine L, Porter J, Kaplan I (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100:185–193

    Google Scholar 

  • Olson JB, Gao X (2013) Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol Ecol 85:74–84

    PubMed  Google Scholar 

  • Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30

    CAS  PubMed  Google Scholar 

  • Pawlik JR, Loh TL, McMurray SE et al (2013) Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS ONE 8(5):e62573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlik JR, McMurray SE, Erwin P et al (2015) No evidence for food limitation of Caribbean reef sponges: reply to Slattery & Lesser (2015). Mar Ecol Prog Ser 527:281–284

    Google Scholar 

  • Pomponi SA, Diaz MC, Van Soest RWM et al (2019) Sponges. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 563–588

    Google Scholar 

  • Pyle RL, Boland R, Bolick H et al (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    PubMed  PubMed Central  Google Scholar 

  • Reed JK, Pomponi SA (1997) Biodiversity and distribution of deep and shallow water sponges in the Bahamas. Proc 8th Int Coral Reef Symp 2:1387–1392

    Google Scholar 

  • Richardson-White S, Walker SE (2011) Diversity, taphonomy and behavior of encrusting foraminifera on experimental shells deployed along a shelf-to-slope bathymetric gradient, Lee Stocking Island, Bahamas. Palaeogeogr Palaeoclimatol Palaeoecol 312:305–324

    Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531

    Google Scholar 

  • Rooney J, Donham E, Montgomery A et al (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361–367

    Google Scholar 

  • Ruiz-Morenol D, Willis BL, Page AC et al (2012) Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis Aquat Org 100:249–261

    PubMed  Google Scholar 

  • Rutzler K, Macintyre IG (eds) (1982) The Atlantic barrier reef ecosystem at Carrier Bow Cay, Belize, I: structure and communities. Smithsonian, Washington, DC

    Google Scholar 

  • Schmahl GP (1990) Community structure and ecology of sponges associated with four southern Florida coral reefs. In: Ruztler K (ed) New perspectives in sponge biology. Smithsonian, Washington, DC, pp 376–383

    Google Scholar 

  • Schultz NE, Lane CE, Le Gall L et al (2015) A barcode analysis of the genus Lobophora (Dictyotales, Phaeophyceae) in the western Atlantic Ocean with four novel species and the epitypification of L. variegata (JV Lamouroux) EC Oliveira. Eur J Phycol 50:481–500

    CAS  Google Scholar 

  • Sherman C, Nemeth M, Ruíz H et al (2010) Geomorphology and benthic cover of mesophotic coral ecosystems of the upper insular slope of southwest Puerto Rico. Coral Reefs 29:347–360

    Google Scholar 

  • Sherman C, Schmidt W, Appeldoorn R et al (2016a) Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems. Cont Shelf Res 129:1–9

    Google Scholar 

  • Sherman KD, Dahlgren CP, Stevens JR et al (2016b) Integrating population biology into conservation management for endangered Nassau grouper Epinephelus striatus. Mar Ecol Prog Ser 554:263–280

    Google Scholar 

  • Slattery M, Lesser MP (2012) Mesophotic coral reefs: a global model of community structure and function. Proc 12th Int Coral Reef Symp 1:9–13

    Google Scholar 

  • Slattery M, Lesser MP (2014) Allelopathy in the tropical alga Lobophora variegata (Phaeophyceae): mechanistic basis for a phase shift on mesophotic coral reefs? J Phycol 50:493–505

    PubMed  Google Scholar 

  • Slattery M, Lesser MP (2015) Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): Comment on Pawlik et al (2015). Mar Ecol Prog Ser 527:275–279

    Google Scholar 

  • Slattery M, Lesser MP, Brazeau D et al (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41

    Google Scholar 

  • Slattery M, Gochfeld DJ, Diaz MC et al (2016) Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus. Coral Reefs 35:11–22

    Google Scholar 

  • Smith TB, Blondeau J, Nemeth RS et al (2010) Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, US Virgin Islands. Coral Reefs 29:289–308

    Google Scholar 

  • Smith TB, Brandtneris VW, Canals M et al (2016a) Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front Mar Sci 3:115

    Google Scholar 

  • Smith TB, Gyory J, Brandt ME et al (2016b) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    PubMed  Google Scholar 

  • Spalding MD, Fox HE, Allen GR et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Google Scholar 

  • Stump K, Dahlgren CP, Sherman KD et al (2017) Nassau grouper migration patterns during full moon suggest collapsed historic fish spawning aggregation and evidence of an undocumented aggregation. Bull Mar Sci 93:375–389

    Google Scholar 

  • Turner JA, Babcock RC, Hovey R, Kendrick GA (2017) Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J Mar Sci 74:2309

    Google Scholar 

  • Vogel S (1977) Current-induced flow through living sponges in nature. Proc Natl Acad Sci 74:2069–2071

    CAS  PubMed  Google Scholar 

  • Whaylen L, Bush P, Johnson B et al (2007) Aggregation dynamics and lessons learned from five years of monitoring at a Nassau grouper (Epinephelus striatus) spawning aggregation in Little Cayman, Cayman Islands, BWI. Gulf Caribbean Fish Institute Proceedings, pp 1–9

    Google Scholar 

  • Wolanski E, Colin P, Naithani J et al (2004) Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuar Coast Shelf Sci 60:705–716

    Google Scholar 

Download references

Acknowledgments

We thank C. Easson, C. Fiore, D. Gochfeld, J. Jarett, L. Kintzing, L. Krentz, E. Marsh, and J. Olson for assistance with the fieldwork, and M.C. Diaz and M. Kelly for the sponge identifications. D. Gochfeld generously provided sponge data from shallow reefs for comparative analyses, as well as help with the PRIMER program. A. Woolsey developed the map, and D. Gochfeld and E. Kintzing provided photos. The staffs of the Caribbean Marine Research Center and the Little Cayman Research Centre, provided logistical support. We thank the Bahamas Department of Marine Resources and the Cayman Islands Department of Environment for providing permits for this research. All experiments conducted for this study complied with laws of the Bahamas, the Cayman Islands, and the United States of America. This project was funded by grants from the National Science Foundation: Divisions of Environmental Biology, and Biological Oceanography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Slattery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slattery, M., Lesser, M.P. (2019). The Bahamas and Cayman Islands. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_3

Download citation

Publish with us

Policies and ethics