Skip to main content

Bermuda

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Bermuda’s subtropical coral reefs represent the northernmost reef system in the Atlantic Ocean, and consist of a large lagoon with thousands of patch reefs, bounded along the edge by a shallow annular rim reef tract that drops quickly to mesophotic coral ecosystems (MCEs) encircling the entire platform and two adjacent shallow seamounts. Although extensive investigations on Bermuda’s MCEs are lacking, several historical studies, conducted via dredging (late 1800s), followed by more recent investigations (1970s–2000s) using traps, deep diving, submersibles, and remotely operated vehicles, have occurred, and thus, a diverse collection of information has accumulated on MCEs. These studies reveal reefs dominated by scleractinian corals that decrease in abundance and diversity from upper to lower MCEs towards habitat dominated by fossil biogenic reefs and rhodolith beds with low topographic complexity. Fish and algal communities thrive on MCEs in Bermuda, and it is suggested that depth may serve as a refuge from fishing pressure for many species. However, invasive lionfish (Pterois spp.) are documented in high abundance on MCEs in Bermuda, which may threaten the health of these ecosystems. Here we discuss research, albeit limited, conducted on MCEs in Bermuda including descriptions of the physical environment, benthic habitat, and general ecology, with particular attention to the biodiversity of major taxonomic groups, and provide suggestions for ecosystem management and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Relative abundance is defined as the maximum number of any one species seen at one time during a 60 min BRUVs deployment.

References

  • Andradi-Brown DA, Vermeij MJA, Slattery M et al (2017) Large-scale invasion of western Atlantic mesophotic reefs by lionfish potentially undermines culling-based management. Biol Invasions 19:939–954

    Article  Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I et al (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Bardach JE (1958) Bermuda fisheries research program: final report. Bermuda Trade Dev Board, 59 pp

    Google Scholar 

  • Bardach JE (1959) The summer standing crop of fish on a shallow Bermuda reef. Limnol Oceanogr 4:77–85

    Article  Google Scholar 

  • Bejarano I, Appeldoorn R, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33:313–328

    Article  Google Scholar 

  • Bigelow HB (1905) The shoal-water deposits of the Bermuda Banks. Proc Am Acad Arts Sci 15:559–592

    Article  Google Scholar 

  • Boden BP, Kampa EM (1953) Winter cascading from an oceanic island and its biological implications. Nature 171:426

    Article  Google Scholar 

  • Bodungen, BV, Jickells TD, Smith SR et al (1982) The Bermuda marine environment: volume III. The final report of the Bermuda Inshore Waters Investigations 1975–1980. BBSR Special Publication 18.123 pp

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM et al (2010) Assessing the Deep Reef Refugia hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Frade PR, Ogier J et al (2013a) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205

    Article  Google Scholar 

  • Bongaerts P, Muir P, Englebert N et al (2013b) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935–935

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R et al (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3:e1602373

    Article  Google Scholar 

  • Brazeau DA, Lesser MP, Slattery M (2013) Genetic structure in the coral Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8:e65845

    Article  CAS  Google Scholar 

  • Butler JN, Burnett-Herkes J, Barnes JA et al (1993) The Bermuda fisheries a tragedy of the commons averted? Environment 35:6–33

    Google Scholar 

  • Calder DR (2000) Assemblages of hydroids (Cnidaria) from three seamounts near Bermuda in the western North Atlantic. Deep Sea Res Part 1 Oceanogr Res Pap 47:1125–1139

    Article  Google Scholar 

  • Cappo M, Harvey E, Shortis M (2007) Counting and measuring fish with baited video techniques – an overview. In: Proceedings of the Australian Society for Fish Biology Workshop, 2006, pp 101–114

    Google Scholar 

  • Coates K, Fourqurean J, Kenworthy W et al (2013) Introduction of Bermuda: geology, oceanography and climate. In: Sheppard C (ed) Coral reefs of the world. Coral reefs of the UK overseas territories. Springer, Dordrecht, pp 115–133

    Chapter  Google Scholar 

  • De Laubenfels M, Hindle D (1950) An ecological discussion of the sponges of Bermuda. J Zool 27:155–201

    Google Scholar 

  • Eddy C (2016) An investigation of the biology and ecology of the invasive lionfish (Pterois volitans and P. Miles) to explore their ecological impact and inform management in Bermuda’s marine ecosystem. Dissertation, University of Massachusetts Dartmouth

    Google Scholar 

  • Eddy C, Pitt J, Smith SR et al (2015) Distribution and abundance of the invasive lionfish along a depth gradient in Bermuda: Identification of deep reef “hot spots.” In: Abstracts of the 37th meeting of the Association of Marine Laboratories of the Caribbean, Curacao, 2015

    Google Scholar 

  • Faiella G (2003) Fishing in Bermuda. Macmillan Education, Oxford

    Google Scholar 

  • Focke J, Gebelein C (1978) Marine lithification of reef rock and rhodolites at a fore-reef slope locality (−50m) off Bermuda. Geol Mijnb 57:163–171

    Google Scholar 

  • Frederick JJ (1963) The marine algae of the Bermuda platform. PhD Dissertation, University of Michigan, Michigan

    Google Scholar 

  • Fricke HW, Meischner D (1985) Depth limits of Bermudan scleractinian corals: a submersible survey. Mar Biol 88:175–187

    Article  Google Scholar 

  • Goodbody-Gringley G, Marchini C, Chequer A et al (2015) Population structure of the great star coral, Montastraea cavernosa, on mesophotic reefs in Bermuda. PLoS ONE 10:e0142427

    Article  Google Scholar 

  • Goodbody-Gringley G, Chequer A, Eddy C et al (2016) Ecological drivers of lionfish aggregations on mesophotic reefs in Bermuda. In: Abstracts of the 13th International Coral Reef Symposium, Hawaii, 2016

    Google Scholar 

  • Gress E, Andradi-Brown DA, Woodall L et al (2017) Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic. Peer J 5:e3683

    Article  Google Scholar 

  • Gundersen K, Orcutt KM, Purdie DA et al (2001) Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res Pt II, Top Stud In Oceanogr 48:1697–1718

    Google Scholar 

  • Hellwarth B (2012) Sealab: America’s forgotten quest to live and work on the ocean floor. Simon and Schuster, New York

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA et al (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology and management.” Coral Reefs 29:247–251

    Article  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  Google Scholar 

  • Iliffe TM, Kvitek R, Blasco S et al (2011) Search for Bermuda’s deep water caves. Hydrobiologia 677:157–168

    Article  CAS  Google Scholar 

  • Jackson JBC, Donovan M, Cramer K et al (2014) Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, pp 1970–2012

    Google Scholar 

  • Jones R, Johnson R, Noyes T et al (2012) Spatial and temporal patterns of coral black band disease in relation to a major sewage outfall. Mar Ecol Prog Ser 462:79–92

    Article  Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:e54

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Lea JSE, Wetherbee BM, Queiroz N et al (2015) Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci Rep 5:11

    Article  Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Article  Google Scholar 

  • Lesser MP, Slattery M (2013) Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS ONE 8:e79799

    Article  CAS  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Locke J, Coates K, Bilewitch J et al (2013a) Biogeography, biodiversity and connectivity of Bermuda’s coral reefs. In: Sheppard C (ed) Coral reefs of the world. Coral reefs of the UK overseas territories. Springer, Dordrecht, pp 153–172

    Chapter  Google Scholar 

  • Locke J, Bilewitch J, Coates K (2013b) Scleractinia, Octocorallia and Antipatharia of Bermuda’s reefs and deep-water coral communities: a taxonomic perspective including new records. In: Sheppard C (ed) Coral reefs of the world. Coral reefs of the UK overseas territories. Springer, Dordrecht, pp 189–200

    Chapter  Google Scholar 

  • Logan A (1988) Holocene reefs of Bermuda. sedimenta XI. University of Miami, Miami, p 63

    Google Scholar 

  • Logan A, Murdoch T (2011) Bermuda. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process, Earth Science Series. Springer-Verlag, Dordrecht, pp 469–486

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T et al (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Article  Google Scholar 

  • Luckhurst BE (1996) A fishery-independent assessment of Bermuda’s coral reef fish stocks by diver census following the fish pot ban – a progress report. In: Proceedings of the 46th Gulf Caribbean Fisheries Institute, 1996

    Google Scholar 

  • Luckhurst BE (2001) Report on the spiny lobster fishery of Bermuda. In: Report of the FAO/DANIDA/CFRAMP/WECAFC regional workshops on the assessment of Caribbean spiny lobster (Panulirus argus). FAO Fisheries Report 619. p 175–178

    Google Scholar 

  • Luckhurst BE, Farrell SO (2013) Rapid recovery of parrotfish (Scaridae) and surgeonfish (Acanthuridae) population following the fish pot ban in Bermuda. In: 66th Gulf Caribbean Fisheries Institute, pp 301–306

    Google Scholar 

  • Luckhurst BE, Trott TM (2008) Seasonally-closed spawning aggregation sites for red hind (Epinephelus guttatus): Bermuda’s experience of 30 years (1974–2003). In: Proceedings of the 61st Gulf Caribbean Fisheries Institute, 2008

    Google Scholar 

  • Madin LP, Horgan EF, Steinberg DK (2001) Zooplankton at the Bermuda Atlantic Time-series Study (BATS) station: diel, seasonal and interannual variation in biomass, 1994–1998. Deep Sea Res Part 2 Top Stud Oceanogr 48:2063–2082

    Article  Google Scholar 

  • Marine Environmental Program [MEP] (2007) Annual report: 2006–2007. Annual report submitted by the Bermuda Institute of Ocean Sciences to the Bermuda Department of Environmental Protection, Ministry of Environment and Sport. Bermuda Aquarium, Museum, and Zoo Pub 2230

    Google Scholar 

  • McGillicuddy DJ, Anderson LA, Bates NR et al (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316:1021–1026

    Article  CAS  Google Scholar 

  • Murdoch TJT, Murdoch JMH (2016) Baseline condition of the coral reefs and fishes across three depth zones of the forereef of Bermuda. BREAM: Bermuda Reef Ecosystem Analysis and Monitoring Programme Report, 72 pp

    Google Scholar 

  • Newman MJH, Paredes GA, Sala E et al (2006) Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol Lett 9:1216–1227

    Article  Google Scholar 

  • van Oppen MJH, Bongaerts P, Underwood JN et al (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20:1647–1660

    Google Scholar 

  • Ow YX, Todd PA (2010) Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs 29:797–808

    Article  Google Scholar 

  • Pinheiro HT, Goodbody-Gringley G, Jessup ME et al (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35:139–151

    Article  Google Scholar 

  • Pitt JM, Trott TM (2014) Efforts to develop a lionfish-specific trap for use in Bermuda waters. In: Proceedings of the 66th Gulf Caribbean Fisheries Institute, 2014

    Google Scholar 

  • Prada C, Hellberg ME (2013) Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc Natl Acad Sci 110:3961–3966

    Article  CAS  Google Scholar 

  • Rützler K (1974) The burrowing sponges of Bermuda. Smithsonian Institution Press, Washington, DC

    Book  Google Scholar 

  • Sandin SA, Smith JE, DeMartini EE et al (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS ONE 3:e1548

    Article  Google Scholar 

  • Schneider CW (2003) An annotated checklist and bibliography of the marine macroalgae of the Bermuda Islands. Nova Hedwigia 76:276–361

    Article  Google Scholar 

  • Schofield P (2010) Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquat Invasions 5:S117–S122

    Google Scholar 

  • Searles RB, Schneider CW (1987) Observations on the deep-water flora of Bermuda. In: Proceedings of the 12th International Seaweed Symposium, Springer, pp 261–266

    Google Scholar 

  • Serrano X, Baums IB, O’Reilly K et al (2014) Geographic differences in vertical connectivity in the Caribbean coral Monstastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240

    Article  CAS  Google Scholar 

  • Serrano X, Baums IB, Smith TB et al (2016) Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 6:21619

    Article  CAS  Google Scholar 

  • Siegel DA, Michaels AF, Sorensen JC et al (1995) Seasonal variability of light availability and utilization in the Sargasso Sea. J Geophys Res 100:8695–8713

    Article  Google Scholar 

  • Slattery M, Lesser MP, Brazeau DA et al (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41

    Article  Google Scholar 

  • Smith TB, Gyory J, Brandt ME et al (2016) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    Article  Google Scholar 

  • Smith-Vaniz WF, Collette BB (2013) Fishes of Bermuda. Aqua Int J Ichthyol 19:165–186

    Google Scholar 

  • Smith-Vaniz WF, Collette BB, Luckhurst B (1999) Fishes of Bermuda: history, zoogeography, annotated checklist, and identification keys. Allen Press, Lawrence

    Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR et al (2001) Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part 2 Top Stud Oceanogr 48:1405–1447

    Article  CAS  Google Scholar 

  • Sterrer W, Schoepfer-Sterrer C (1986) Marine fauna and flora of Bermuda: a systematic guide to the identification of marine organisms. Wiley, New York

    Google Scholar 

  • Stevenson A (2011) Humpback whale research project, Bermuda. Sargasso Sea Alliance Sci Rep Ser 11:1–11

    Google Scholar 

  • Strimaitis, AM (2012) Filter feeding ecology of erect branching sponges on Caribbean coral reefs. Master’s Thesis. Florida State University, Tallahassee, FL, 75 pp

    Google Scholar 

  • Thompson CW (1877) Voyage of the challenger vol 1: the Atlantic. Harper & Brothers, New York, p 172

    Google Scholar 

  • Venn AA, Weber FK, Loram JE et al (2009) Deep zooxanthellate corals at the high latitude Bermuda Seamount. Coral Reefs 28:135

    Article  Google Scholar 

  • Vermeij MJA, Deikmann OE, Bak RPM (2003) A new species of scleractinian coral (cnidaria, anthozoa), Madracis carmabi n. sp. from the Caribbean. Bull Mar Sci 73:679–684

    Google Scholar 

  • Wagner D, Shuler A (2017) The black coral fauna (Cnidaria: Antipatharia) of Bermuda with new records. Zootaxa 4344:367–379

    Article  Google Scholar 

Download references

Acknowledgements

Portions of this work were funded by the Bermuda Zoological Society’s Research and Conservation Committee, the XL Caitlin Deep Ocean Survey–Nekton mission in the Northwest Atlantic and Bermuda, and DarwinPlus (DPLUS001) from the UK Department of Agriculture, Food, and Rural Affairs. Special thanks are given to the Ocean Support Foundation for technical diving support. We also thank C. Schneider for helpful comments and guidance on MCE algae diversity, D. Wagner for helpful insight regarding antipatharian corals, and J. Heinerth and A. Chequer for underwater images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen Goodbody-Gringley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goodbody-Gringley, G., Noyes, T., Smith, S.R. (2019). Bermuda. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_2

Download citation

Publish with us

Policies and ethics