Skip to main content

How to Induce Arrhythmias with Atropine

  • Chapter
  • First Online:
  • 1300 Accesses

Abstract

Atropine sulfate is the sulfate salt of atropine, which is an alkaloid found in its natural form together with scopolamine and hyoscyamine in the plant Atropa belladonna. The first synthesis of atropine was achieved by Richard Willstätter, a German organic chemist whose studies in the field of alkaloids brought him the 1915 Nobel Prize for Chemistry. Usual doses of atropine (>0.5 mg) abolish various types of vagal reflexmediated bradycardia or asystole and also prevent or abolish the negative chronotropic effect produced by other parasympathomimetic drugs. Atropine also ameliorates the AV conduction when an incomplete block is noted. In some patients with complete heart block, the resultant escape rhythm rate (junctional origin) may be accelerated by atropine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schweitzer P, Mark H. The effect of atropine on cardiac arrhythmias and conduction. Part 1. Am Heart J. 1980;100:255–61.

    Article  CAS  Google Scholar 

  2. Robinson GC, Draper G. Rhythmic changes in the human heart. Heart. 1912;4:97–106.

    Google Scholar 

  3. Wilson FN. The production of atrioventricular rhythm in man after the administration of atropine. Arch Intern Med. 1915;16:989–98.

    Article  Google Scholar 

  4. Thomas M, Woodgate D. The effect of atropine on bradycardia and hypotension in acute myocardial infarction. Br Heart J. 1966;28:409–13.

    Article  CAS  Google Scholar 

  5. Harris A, Bluest R. Treatment of slow heart rate following acute myocardial infarction. Br Heart J. 1966;28:631–7.

    Article  CAS  Google Scholar 

  6. Adgey AAJ, Geddes JA, Mulholland HC, Keegan DAJ, Pantridge JF. Incidence, significance and management of early bradyarrhythmias complicating acute myocardial infarction. Lancet. 1968;23:1097–101.

    Article  Google Scholar 

  7. Shillingford J, Thomas M. Treatment of bradycardia and hypotension syndrome in patients with acute myocardial infarction. Am Heart J. 1968;75:843–4.

    Article  CAS  Google Scholar 

  8. Harvey RD, Belevych AE. Muscarinic regulation of cardiac ion channels. Br J Pharmacol. 2003;139:1074–84.

    Article  CAS  Google Scholar 

  9. Montano N, Cogliati C, Porta A, Pagani M, Malliani A, Narkiewicz K, et al. Central vagotonic effects of atropine modulate spectral oscillations of sympathetic nerve activity. Circulation. 1998;98:1394–9.

    Article  CAS  Google Scholar 

  10. Hinderling PH, Gundert-Remy U, Schmidlin O, Heinzel G. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans. II: pharmacodynamics. J Pharm Sci. 1985;74:711–7.

    Article  CAS  Google Scholar 

  11. Adams RG, Verma P, Jackson AJ, Miller RL. Plasma pharmacokinetics of intravenously administered atropine in normal human subjects. J Clin Pharmacol. 1982;22:477–81.

    Article  CAS  Google Scholar 

  12. https://www.drugs.com/pro/atropine.html

  13. Van der Meer MJ, Hundt HK, Müller FO. The metabolism of atropine in man. J Pharm Pharmacol. 1986;38:781–4.

    Article  Google Scholar 

  14. Kahn G. Cardiac drug therapy. 7th ed. Totowa: Humana Press; 2007. p. 198.

    Google Scholar 

  15. Josephson ME. Sinus node function. In: Josephson ME, editor. Clinical cardiac electrophysiology. Philadelphia: Wolters Kluwer/Lippincott Williams &Wilkins; 2008. p. 71.

    Google Scholar 

  16. Craig FN. Effects of atropine, work and heat on heart rate and sweat production in man. J Appl Physiol. 1952;4:826–33.

    Article  CAS  Google Scholar 

  17. Mandel WJ, Hayakawa H, Allen HN, Danzig R, Kermaier AI. Assessment of sinus node function in patients with the sick sinus syndrome. Circulation. 1972;46:761–9.

    Article  CAS  Google Scholar 

  18. Mandel WJ, Laks MM, Obayashi K. Sinus node function; evaluation in patients with and without sinus node disease. Arch Intern Med. 1975;135:388–94.

    Article  CAS  Google Scholar 

  19. Morton HJV, Thomas ET. Effect of atropine on heart rate. Lancet. 1958;2:1313.

    Article  CAS  Google Scholar 

  20. Reiffel JA, Bigger JT, Giardina EG. “Paradoxical” prolongation of sinus nodal recovery time after atropine in the sick sinus syndrome. Am J Cardiol. 1975;36:98–104.

    Article  CAS  Google Scholar 

  21. Dhingra RC, Amat-Y-Leon F, Wyndham C, Denes P, Wu D, Miller RH, et al. Electrophysiologic effects of atropine on sinus node and atrium in patients with sinus nodal dysfunction. Am J Cardiol. 1976;38:848–55.

    Article  CAS  Google Scholar 

  22. Opthof T. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 2000;1(45):173–6.

    Google Scholar 

  23. Sethi KK, Balachandar J, Jaishankar S, Gupta MP. Differential effects of autonomic blockade on sinus and supraventricular tachycardia and dual atrioventricular atrioventricular nodal function in normals and in intrinsic sinus node dysfunction. Int J Cardiol. 1986;12:233–42.

    Article  CAS  Google Scholar 

  24. Bissett JK, de Soyza ND, Kane JJ, Murphy ML. Electrophysiology of atropine. Cardiovasc Res. 1975;9:73–80.

    Article  CAS  Google Scholar 

  25. Neuss H, Schlepper M, Spies HF. Effects of heart rate and atropine on ‘dual AV conduction’. Br Heart J. 1975;37:1216–27.

    Article  CAS  Google Scholar 

  26. Wu D, Denes P, Bauernfeind R, Dhingra RC, Wyndham C, Rosen KM. Effects of atropine on induction and maintenance of atrioventricular nodal reentrant tachycardia. Circulation. 1979;59:779–88.

    Article  CAS  Google Scholar 

  27. Lin JL, Stephen Huang SK, Lai LP, Ko WC, Tseng YZ, Lien WP. Clinical and electrophysiologic characteristics and long-term efficacy of slow-pathway catheter ablation in patients with spontaneous node pathways without inducible tachycardia. J Am Coll Cardiol. 1998;31:855–60.

    Article  CAS  Google Scholar 

  28. Stellbrink C, Diem B, Schauerte P, Brehmer K, Schuett H, Hanrath P. Differential effects of atropine and isoproterenol on inducibility of atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol. 2001;5:463–9.

    Article  CAS  Google Scholar 

  29. Ito M. The effects of atropine on atrio-ventricular conduction in patients with Wolff-Parkinson-White syndrome. Studies with His bundle electrogram. Jpn Circ J. 1976;40:1285–300.

    Article  CAS  Google Scholar 

  30. Rivarola EW, Hachul D, Wu T, Pisani C, Hardy C, Raimundi F, et al. Targets and end points in cardiac autonomic denervation procedures. Circ Arrhythm Electrophysiol. 2017;10:1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siliste, C., Siliste, RN. (2019). How to Induce Arrhythmias with Atropine. In: Cismaru, G. (eds) Arrhythmia Induction in the EP Lab. Springer, Cham. https://doi.org/10.1007/978-3-319-92729-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92729-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92728-2

  • Online ISBN: 978-3-319-92729-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics