Critical Bubble Collapse

  • Katy CloughEmail author
Part of the Springer Theses book series (Springer Theses)


Since their discovery by Choptuik (Phys Rev Lett 70:9–12, 1993, [1]), critical phenomena have been studied in many different contexts (Abrahams and Evans, Phys Rev Lett 70:2980–2983, 1993, [2], Healy and Laguna, Gen Relativ Gravit 46:1722, 2014, [3], Choptuik et al., Phys Rev D68:044007, 2003, [4], Hilditch et al., Phys Rev D88(10):103009, 2013, [5], Evans and Coleman, Phys Rev Lett 72:1782–1785 1994, [6], Brady et al., Phys Rev D56:6057–6061 1997, [7], Honda and Choptuik, Phys Rev D65:084037 2002, [8], Akbarian and Choptuik, Phys Rev D92(8):084037, 2015, [9]) – for a review see (Gundlach and Martin-Garcia, Living Rev Relativ 10:5, 2007, [10]). Restating briefly the key points from Sect.  2.3.3, any one parameter (p) family of initial configurations of the scalar field will evolve to one of the two final end states – a black hole or the dispersal of the field to infinity. The transition between these two end states occurs at a value of the parameter \(p^*\), at which the critical solution exists.


Bubble Collapse Black Hole Mass Puncture Gauge Scale Echo Choptuik 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993).
  2. 2.
    A. Abrahams, C. Evans, Critical behavior and scaling in vacuum axisymmetric gravitational collapse. Phys. Rev. Lett. 70, 2980–2983 (1993).
  3. 3.
    J. Healy, P. Laguna, Critical collapse of scalar fields beyond axisymmetry. Gen. Relativ. Gravit. 46, 1722 (2014), arXiv:1310.1955 [gr-qc]
  4. 4.
    M.W. Choptuik, E.W. Hirschmann, S.L. Liebling, F. Pretorius, Critical collapse of the massless scalar field in axisymmetry. Phys. Rev. D68, 044007 (2003)., arXiv:gr-qc/0305003 [gr-qc]
  5. 5.
    D. Hilditch, T.W. Baumgarte, A. Weyhausen, T. Dietrich, B. Brügmann, P.J. Montero, E. Müller, Collapse of nonlinear gravitational waves in moving-puncture coordinates. Phys. Rev. D88(10), 103009 (2013)., arXiv:1309.5008 [gr-qc]
  6. 6.
    C.R. Evans, J.S. Coleman, Observation of critical phenomena and self similarity in the gravitational collapse of radiation fluid. Phys. Rev. Lett. 72, 1782–1785 (1994)., arXiv:gr-qc/9402041 [gr-qc]
  7. 7.
    P.R. Brady, C.M. Chambers, S.M.C.V. Goncalves, Phases of massive scalar field collapse. Phys. Rev. D56, 6057–6061 (1997)., arXiv:gr-qc/9709014 [gr-qc]
  8. 8.
    E.P. Honda, M.W. Choptuik, Fine structure of oscillons in the spherically symmetric phi**4 Klein-Gordon model. Phys. Rev. D65, 084037 (2002)., arXiv:hep-ph/0110065 [hep-ph]
  9. 9.
    A. Akbarian, M.W. Choptuik, Black hole critical behavior with the generalized BSSN formulation. Phys. Rev. D92(8), 084037 (2015)., arXiv:1508.01614 [gr-qc]
  10. 10.
    C. Gundlach, J.M. Martin-Garcia, Critical phenomena in gravitational collapse. Living Rev. Relativ. 10, 5 (2007)., arXiv:0711.4620 [gr-qc]
  11. 11.
    T. Koike, T. Hara, S. Adachi, Critical behavior in gravitational collapse of radiation fluid: a renormalization group (linear perturbation) analysis. Phys. Rev. Lett. 74, 5170–5173 (1995)., arXiv:gr-qc/9503007 [gr-qc]
  12. 12.
    J.M. Martin-Garcia, C. Gundlach, All nonspherical perturbations of the Choptuik space-time decay. Phys. Rev. D59, 064031 (1999)., arXiv:gr-qc/9809059 [gr-qc]
  13. 13.
    C. Gundlach, Critical gravitational collapse of a perfect fluid: nonspherical perturbations. Phys. Rev. D65, 084021 (2002)., arXiv:gr-qc/9906124 [gr-qc]
  14. 14.
    T.W. Baumgarte, P.J. Montero, Critical phenomena in the aspherical gravitational collapse of radiation fluids. Phys. Rev. D92(12), 124065 (2015)., arXiv:1509.08730 [gr-qc]
  15. 15.
    M.W. Choptuik, Critical Behaviour in Scalar Field Collapse, in the Conference Proceedings Deterministic Chaos in General Relativity (1994).
  16. 16.
    C. Gundlach, Understanding critical collapse of a scalar field. Phys. Rev. D55, 695–713 (1997)., arXiv:gr-qc/9604019 [gr-qc]
  17. 17.
    M. Campanelli, C. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)., arXiv:gr-qc/0511048 [gr-qc]
  18. 18.
    J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)., arXiv:gr-qc/0511103 [gr-qc]
  19. 19.
    D. Garfinkle, C. Gundlach, Symmetry seeking space-time coordinates. Class. Quantum Gravity 16, 4111–4123 (1999)., arXiv:gr-qc/9908016 [gr-qc]
  20. 20.
    D.J.E. Marsh, Axion Cosmology, arXiv:1510.07633 [astro-ph.CO]
  21. 21.
    C.J. Hogan, M.J. Rees, AXION MINICLUSTERS. Phys. Lett. B205, 228–230 (1988).
  22. 22.
    J. Martin, C. Ringeval, V. Vennin, Encyclopaedia inflationaris. Phys. Dark Univ. 5, 6, 75–235 (2014)., arXiv:1303.3787 [astro-ph.CO]
  23. 23.
    J.L. Feng, J. March-Russell, S. Sethi, F. Wilczek, Saltatory relaxation of the cosmological constant. Nucl. Phys. B602, 307–328 (2001)., arXiv:hep-th/0005276 [hep-th]
  24. 24.
    C.L. Wainwright, M.C. Johnson, A. Aguirre, H.V. Peiris, Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full General Relativity. JCAP 1410(10), 024 (2014)., arXiv:1407.2950 [hep-th]
  25. 25.
    K. Clough, E.A. Lim, Critical phenomena in non-spherically symmetric scalar bubble collapse, arXiv:1602.02568 [gr-qc]
  26. 26.
    H.-O. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972).
  27. 27.
    P. Figueras, M. Kunesch, S. Tunyasuvunakool, The endpoint of black ring instabilities and the weak cosmic censorship conjecture, arXiv:1512.04532 [hep-th]

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations