Advertisement

Inhomogeneous Inflation

  • Katy CloughEmail author
Chapter
  • 255 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Cosmic Inflation (Guth, Phys Rev D 23:347–356, 1981, [1], Linde, Phys Lett B, 108:389–393, 1982, [2], Albrecht and Steinhardt, Phys Rev Lett 48:1220–1223, 1982, [3], Starobinsky, Phys Lett B 91:99–102, 1980, [4]) is thought to provide a solution to several problems in standard Big Bang theory by dynamically driving a “generic” initial state to a flat, homogeneous and isotropic Universe, while generating a nearly scale-invariant power spectrum of primordial perturbations which is consistent with observations. The question of what constitutes a “generic” initial state is a difficult one, and can only be understood in the context of a quantum theory of gravity. However, regardless of the nature of quantum gravity, a random realisation from the set of all possible initial conditions will not look like an inflationary spacetime, at least initially (Hollands and Wald, Gen Relativ Gravit 34:2043–2055, 2002, [5]), and one should expect the initial conditions from which inflation begins to contain some measure of inhomogeneity.

References

  1. 1.
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    S. Hollands, R.M. Wald, An alternative to inflation. Gen. Relativ. Gravit. 34, 2043–2055 (2002). arXiv:gr-qc/0205058 [gr-qc]
  6. 6.
    G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S.W. Hawking, I.G. Moss, Supercooled phase transitions in the very early universe. Phys. Lett. B 110, 35–38 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    R.M. Wald, Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 28, 2118–2120 (1983)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.A. Starobinsky, Isotropization of arbitrary cosmological expansion given an effective cosmological constant. JETP Lett. 37, 66–69 (1983)ADSGoogle Scholar
  10. 10.
    J.D. Barrow, J. Stein-Schabes, Inhomogeneous cosmologies with cosmological constant. Phys. Lett. A 103, 315 (1984)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Albrecht, R.H. Brandenberger, On the realization of new inflation. Phys. Rev. D 31, 1225 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    J. Barrow, F. Tipler, Closed universe - their future evolution and final state. MNRAS 216, 395–402 (1985)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G.W. Gibbons, S.W. Hawking, J.M. Stewart, A natural measure on the set of all universes. Nucl. Phys. B 281, 736 (1987)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L.G. Jensen, J.A. Stein-Schabes, Is inflation natural? Phys. Rev. D 35, 1146 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    S.W. Hawking, D.N. Page, How probable is inflation? Nucl. Phys. B 298, 789–809 (1988)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Penrose, Difficulties with inflationary cosmology. Ann. N. Y. Acad. Sci. 571, 249–264 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    V. Muller, H.J. Schmidt, A.A. Starobinsky, Power law inflation as an attractor solution for inhomogeneous cosmological models. Class. Quantum Gravity 7, 1163–1168 (1990)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Kitada, K.-I. Maeda, Cosmic no hair theorem in power law inflation. Phys. Rev. D 45, 1416–1419 (1992)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Kitada, K.-I. Maeda, Cosmic no hair theorem in homogeneous space-times. 1. Bianchi models. Class. Quantum Gravity 10, 703–734 (1993)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Bruni, S. Matarrese, O. Pantano, A local view of the observable universe. Phys. Rev. Lett. 74, 1916–1919 (1995). arXiv:astro-ph/9407054 [astro-ph]ADSCrossRefGoogle Scholar
  21. 21.
    A. Maleknejad, M.M. Sheikh-Jabbari, Revisiting cosmic no-hair theorem for inflationary settings. Phys. Rev. D 85, 123508 (2012). arXiv:1203.0219 [hep-th]ADSCrossRefGoogle Scholar
  22. 22.
    G.W. Gibbons, N. Turok, The measure problem in cosmology. Phys. Rev. D 77, 063516 (2008). arXiv:hep-th/0609095 [hep-th]
  23. 23.
    W. Boucher, G.W. Gibbons, Cosmic baldness, in Nuffield Workshop on the Very Early Universe Cambridge, England, June 21-July 9, 1982 (2011), pp. 273–278, arXiv:1109.3535 [astro-ph.CO], http://inspirehep.net/record/927698/files/arXiv:1109.3535.pdf
  24. 24.
    M. Bruni, F.C. Mena, R.K. Tavakol, Cosmic no hair: nonlinear asymptotic stability of de sitter universe. Class. Quantum Gravity 19, L23–L29 (2002). arXiv:gr-qc/0107069 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V. Muller, H.J. Schmidt, A.A. Starobinsky, The stability of the de Sitter space-time in fourth order gravity. Phys. Lett. B 202, 198–200 (1988)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.D. Barrow, G. Goetz, The asymptotic approach to de Sitter space-time. Phys. Lett. B 231, 228–230 (1989)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Bicak, J. Podolsky, Global structure of Robinson-Trautman radiative space-times with a cosmological constant. Phys. Rev. D55, 1985–1993 (1997). arXiv:gr-qc/9901018 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Capozziello, R. de Ritis, A.A. Marino, Recovering the effective cosmological constant in extended gravity theories. Gen. Relativ. Gravit. 30, 1247–1272 (1998). arXiv:gr-qc/9804053 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    T. Vachaspati, M. Trodden, Causality and cosmic inflation. Phys. Rev. D 61, 023502 (1999). arXiv:gr-qc/9811037 [gr-qc]
  30. 30.
    J.D. Barrow, Cosmic no hair theorems and inflation. Phys. Lett. B 187, 12–16 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Barrow, The deflationary universe: an instability of the de Sitter universe. Phys. Lett. B 180, 335–339 (1986)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A.M. Polyakov, Decay of vacuum energy. Nucl. Phys. B 834, 316–329 (2010). arXiv:0912.5503 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Marolf, I.A. Morrison, The IR stability of de Sitter QFT: results at all orders. Phys. Rev. D 84, 044040 (2011). arXiv:1010.5327 [gr-qc]ADSCrossRefGoogle Scholar
  34. 34.
    N.C. Tsamis, R.P. Woodard, Relaxing the cosmological constant. Phys. Lett. B 301, 351–357 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    R.H. Brandenberger, Back reaction of cosmological perturbations and the cosmological constant problem, in 18th IAP Colloquium on the Nature of Dark Energy: Observational and Theoretical Results on the Accelerating Universe Paris, France, July 1–5, 2002. 2002, arXiv:hep-th/0210165 [hep-th], http://alice.cern.ch/format/showfull?sysnb=2346008
  36. 36.
    G. Geshnizjani, R. Brandenberger, Back reaction of perturbations in two scalar field inflationary models. JCAP 0504, 006 (2005). arXiv:hep-th/0310265 [hep-th]CrossRefGoogle Scholar
  37. 37.
    G. Marozzi, G.P. Vacca, R.H. Brandenberger, Cosmological backreaction for a test field observer in a chaotic inflationary model. JCAP 1302, 027 (2013). arXiv:1212.6029 [hep-th]ADSCrossRefGoogle Scholar
  38. 38.
    R.H. Brandenberger, J.H. Kung, Chaotic inflation as an attractor in initial condition space. Phys. Rev. D 42, 1008–1015 (1990)ADSGoogle Scholar
  39. 39.
    S.M. Carroll, H. Tam, Unitary evolution and cosmological fine-tuning. arXiv:1007.1417 [hep-th]
  40. 40.
    A. Corichi, A. Karami, On the measure problem in slow roll inflation and loop quantum cosmology. Phys. Rev. D 83, 104006 (2011). arXiv:1011.4249 [gr-qc]ADSCrossRefGoogle Scholar
  41. 41.
    J.S. Schiffrin, R.M. Wald, Measure and probability in cosmology. Phys. Rev. D 86, 023521 (2012). arXiv:1202.1818 [gr-qc]ADSCrossRefGoogle Scholar
  42. 42.
    G.N. Remmen, S.M. Carroll, Attractor solutions in scalar-field cosmology. Phys. Rev. D 88, 083518 (2013). arXiv:1309.2611 [gr-qc]ADSCrossRefGoogle Scholar
  43. 43.
    A. Corichi, D. Sloan, Inflationary attractors and their measures. Class. Quantum Gravity 31, 062001 (2014). arXiv:1310.6399 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    V. Mukhanov, Inflation without selfreproduction. Fortsch. Phys. 63, 36–41 (2015). arXiv:1409.2335 [astro-ph.CO]MathSciNetCrossRefGoogle Scholar
  45. 45.
    G.N. Remmen, S.M. Carroll, How many \(e\)-folds should we expect from high-scale inflation? Phys. Rev. D 90(6), 063517 (2014). arXiv:1405.5538 [hep-th]ADSCrossRefGoogle Scholar
  46. 46.
    L. Berezhiani, M. Trodden, How likely are constituent quanta to initiate inflation? Phys. Lett. B 749, 425–430 (2015). arXiv:1504.01730 [hep-th]ADSCrossRefGoogle Scholar
  47. 47.
    M. Kleban, L. Senatore, Inhomogeneous anisotropic cosmology. arXiv:1602.03520 [hep-th]
  48. 48.
    A. Alho, F.C. Mena, Pre-inflationary homogenization of scalar field cosmologies. Phys. Lett. B 703, 537–542 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    A. Albrecht, R.H. Brandenberger, R. Matzner, Numerical analysis of inflation. Phys. Rev. D 32, 1280 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    A. Albrecht, R.H. Brandenberger, R. Matzner, Inflation with generalized initial conditions. Phys. Rev. D 35, 429 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    H. Kurki-Suonio, R.A. Matzner, J. Centrella, J.R. Wilson, Inflation from inhomogeneous initial data in a one-dimensional back reacting cosmology. Phys. Rev. D 35, 435–448 (1987)ADSCrossRefGoogle Scholar
  52. 52.
    H.A. Feldman, R.H. Brandenberger, Chaotic inflation with metric and matter perturbations. Phys. Lett. B 227, 359–366 (1989)ADSCrossRefGoogle Scholar
  53. 53.
    R.H. Brandenberger, H.A. Feldman, Effects of gravitational perturbations on the evolution of scalar fields in the early universe. Phys. Lett. B 220, 361–367 (1989)ADSCrossRefGoogle Scholar
  54. 54.
    D.S. Goldwirth, T. Piran, Inhomogeneity and the onset of inflation. Phys. Rev. Lett. 64, 2852–2855 (1990)ADSCrossRefGoogle Scholar
  55. 55.
    D.S. Goldwirth, T. Piran, Spherical inhomogeneous cosmologies and inflation. 1. Numerical methods. Phys. Rev. D 40, 3263 (1989)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    R.H. Brandenberger, H. Feldman, J. Kung, Initial conditions for chaotic inflation. Phys. Scr. T 36, 64–69 (1991)ADSCrossRefGoogle Scholar
  57. 57.
    P. Laguna, H. Kurki-Suonio, R.A. Matzner, Inhomogeneous inflation: the initial value problem. Phys. Rev. D 44, 3077–3086 (1991)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    D.S. Goldwirth, T. Piran, Initial conditions for inflation. Phys. Rept. 214, 223–291 (1992)CrossRefGoogle Scholar
  59. 59.
    H. Kurki-Suonio, P. Laguna, R.A. Matzner, Inhomogeneous inflation: numerical evolution. Phys. Rev. D48, 3611–3624 (1993), arXiv:astro-ph/9306009 [astro-ph]ADSCrossRefGoogle Scholar
  60. 60.
    R. Easther, L.C. Price, J. Rasero, Inflating an inhomogeneous universe. JCAP 1408, 041 (2014). arXiv:1406.2869 [astro-ph.CO]Google Scholar
  61. 61.
    W.E. East, M. Kleban, A. Linde, L. Senatore, Beginning inflation in an inhomogeneous universe, arXiv:1511.05143 [hep-th]
  62. 62.
    J. Braden, M.C. Johnson, H.V. Peiris, A. Aguirre, Constraining cosmological ultra-large scale structure using numerical relativity, arXiv:1604.04001 [astro-ph.CO]
  63. 63.
    R. Brandenberger, Initial conditions for inflation - a short review, arXiv:1601.01918 [hep-th]
  64. 64.
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys. Rev. Lett. 78, 1861–1863 (1997), arXiv:hep-ph/9606387 [hep-ph]ADSCrossRefGoogle Scholar
  65. 65.
    M.S. Turner, Detectability of inflation produced gravitational waves. Phys. Rev. D55, R435–R439 (1997), arXiv:astro-ph/9607066 [astro-ph]ADSCrossRefGoogle Scholar
  66. 66.
    K. Clough, E.A. Lim, B.S. DiNunno, W. Fischler, R. Flauger, S. Paban, Robustness of inflation to inhomogeneous initial conditions, arXiv:1608.04408 [hep-th]
  67. 67.
    S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008), https://books.google.co.uk/books?id=nqQZdg020fsC
  68. 68.
    J.R. van Meter, J.G. Baker, M. Koppitz, D.-I. Choi, How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011 (2006). arXiv:gr-qc/0605030 [gr-qc]
  69. 69.
    M. Campanelli, C. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). arXiv:gr-qc/0511048 [gr-qc]
  70. 70.
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XX, Constraints on inflation (2015), arXiv:1502.02114 [astro-ph.CO]
  71. 71.
    L. Boubekeur, D. Lyth, Hilltop inflation. JCAP 0507, 010 (2005). arXiv:hep-ph/0502047 [hep-ph]CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations