Advertisement

GRChombo - Code Development and Testing

  • Katy CloughEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

\(\mathtt {GRChombo}\) is a new multi-purpose numerical relativity code, which is built on top of the open source \(\mathtt {Chombo}\) (Adams et al., Chombo software package for AMR applications - Design Document, Lawrence Berkeley National Laboratory technical report LBNL-6616E, [1]) framework. In this chapter, we will detail the capabilities of \(\mathtt {GRChombo}\) and illustrate how they expand the current field in numerical GR to permit new physics to be explored. The design methodology, scaling properties and performance of \(\mathtt {GRChombo}\) in a number of standard simulations are included. Videos of simulations using \(\mathtt {GRChombo}\) can be viewed via the website at www.grchombo.org. The work presented in this chapter is mainly derived from the paper “GRChombo: Numerical Relativity with Adaptive Mesh Refinement” (Clough et al., Class Quantum Gravity 32(24):245011, 2015, [2]).

References

  1. 1.
    M. Adams, P. Colella, D.T. Graves, J.N. Johnson, N.D. Keen, T.J. Ligocki, D.F. Martin, P.W. McCorquodale, D. Modiano, P.O. Schwartz, T.D. Sternberg, B. Straalen, Chombo Software Package for AMR Applications - Design Document, Lawrence Berkeley National Laboratory Technical Report LBNL-6616EGoogle Scholar
  2. 2.
    K. Clough, P. Figueras, H. Finkel, M. Kunesch, E.A. Lim, S. Tunyasuvunakool, GRChombo: numerical relativity with adaptive mesh refinement. Class. Quantum Gravity 32(24), 245011 (2015), arXiv:1503.03436 [gr-qc]. [Class. Quantum Gravity 32, 24 (2015)]ADSCrossRefGoogle Scholar
  3. 3.
    M. Babiuc, S. Husa, D. Alic, I. Hinder, C. Lechner et al., Implementation of standard testbeds for numerical relativity. Class. Quantum Gravity 25, 125012 (2008). arXiv:0709.3559 [gr-qc]ADSCrossRefGoogle Scholar
  4. 4.
    M. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cyber. 21, 1278–1286 (1991)CrossRefGoogle Scholar
  7. 7.
    Tutorials Point: C++ Tutorial, https://www.tutorialspoint.com/cplusplus/
  8. 8.
    B. Stroustrup, The C++ Programming Language (Pearson Education, 2013). https://books.google.co.uk/books?id=PSUNAAAAQBAJ
  9. 9.
    M. Campanelli, C. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006), arXiv:gr-qc/0511048 [gr-qc]
  10. 10.
    J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006), arXiv:gr-qc/0511103 [gr-qc]
  11. 11.
    Y. Zlochower, J. Baker, M. Campanelli, C. Lousto, Accurate black hole evolutions by fourth-order numerical relativity. Phys. Rev. D 72, 024021 (2005), arXiv:gr-qc/0505055 [gr-qc]
  12. 12.
    H.-O. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D. Pollney et al., Gauge conditions for long term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023 (2003), arXiv:gr-qc/0206072 [gr-qc]
  14. 14.
    T. Baumgarte, S. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010). https://books.google.co.uk/books?id=dxU1OEinvRUC
  15. 15.
    J. Thornburg, A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity. Class. Quantum Gravity 21, 743–766 (2004), arXiv:gr-qc/0306056 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    V. Cardoso, L. Gualtieri, C. Herdeiro, U. Sperhake, Exploring new physics frontiers through numerical relativity, arXiv:1409.0014 [gr-qc]
  17. 17.
    M. Alcubierre, Introduction to 3+1 Numerical Relativity. International Series of Monographs on Physics (Oxford University Press, Oxford, 2008). https://books.google.co.uk/books?id=8IJCmQEACAAJ
  18. 18.
    D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040 (2012). arXiv:1106.2254 [gr-qc]ADSCrossRefGoogle Scholar
  19. 19.
    Z. Cao, D. Hilditch, Numerical stability of the Z4c formulation of general relativity. Phys. Rev. D 85, 124032 (2012). arXiv:1111.2177 [gr-qc]ADSCrossRefGoogle Scholar
  20. 20.
    M. Hannam, S. Husa, F. Ohme, B. Bruegmann, N. O’Murchadha, Wormholes and trumpets: the Schwarzschild spacetime for the moving-puncture generation. Phys. Rev. D 78, 064020 (2008). arXiv:0804.0628 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S.R. Brandt, E. Seidel, The evolution of distorted rotating black holes. 3: initial data. Phys. Rev. D54, 1403–1416 (1996). arXiv:gr-qc/9601010 [gr-qc]
  22. 22.
    D.R. Brill, R.W. Lindquist, Interaction energy in geometrostatics. Phys. Rev. 131, 471–476 (1963)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    F. Loffler et al., The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. Class. Quantum Gravity 29, 115001 (2012). arXiv:1111.3344 [gr-qc]ADSCrossRefGoogle Scholar
  24. 24.
    U. Sperhake, Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007), arXiv:gr-qc/0606079 [gr-qc]
  25. 25.
    M. Zilhao, H. Witek, U. Sperhake, V. Cardoso, L. Gualtieri, C. Herdeiro, A. Nerozzi, Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests. Phys. Rev. D 81, 084052 (2010). arXiv:1001.2302 [gr-qc]ADSCrossRefGoogle Scholar
  26. 26.
    Cactus Computational Toolkit, http://www.cactuscode.org/
  27. 27.
    E. Schnetter, S.H. Hawley, I. Hawke, Evolutions in 3-D numerical relativity using fixed mesh refinement. Class. Quantum Gravity 21, 1465–1488 (2004), arXiv:gr-qc/0310042 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Carpet: Adaptive Mesh Refinement for the Cactus Framework, http://www.carpetcode.org/
  29. 29.
    The Einstein Toolkit, http://einsteintoolkit.org/
  30. 30.
    M. Ansorg, B. Bruegmann, W. Tichy, A Single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011 (2004), arXiv:gr-qc/0404056 [gr-qc]
  31. 31.
    J. Thornburg, Finding apparent horizons in numerical relativity. Phys. Rev. D54, 4899–4918 (1996). arXiv:gr-qc/9508014 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations