Technical Background

  • Katy CloughEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter the key topics covered by the thesis are explored in more technical detail. We follow the theoretical steps in formulating a numerical evolution, and the background to the specific problems studied. Discussion of the implementation aspects of the numerical evolution are left to the following chapter in which the code which was developed is described. As in Chap.  1, we divide this chapter into three sections, GR, NR and Scalar Fields.


Conformally Flat Spatial Slice Conformal Time Hamiltonian Constraint Momentum Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 2009),
  2. 2.
    S. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, San Francisco, 2004),
  3. 3.
    R. Wald, General Relativity (University of Chicago Press, Chicago, 1984),
  4. 4.
    B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980),
  5. 5.
    Wikimedia Commons: The free media repository,
  6. 6.
    R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity. Gen. Relat. Gravit. 40, 1997–2027 (2008), arXiv:gr-qc/0405109 [grspsqc]
  7. 7.
    J.W. York Jr., Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, ed. by L.L. Smarr (1979), pp. 83–126Google Scholar
  8. 8.
    L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, Cambridge, 2010),
  9. 9.
    P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009), arXiv:0901.3775 [hepspsth]
  10. 10.
    L. Amendola et al., Cosmology and Fundamental Physics with the Euclid Satellite, arXiv:1606.00180 [astrospsph.CO]
  11. 11.
    T. Nakamura, K. Oohara, Y. Kojima, General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1–218 (1987)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Shibata, T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428–5444 (1995)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    T.W. Baumgarte, S.L. Shapiro, On the numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999), arXiv:gr-qc/9810065 [grspsqc]
  14. 14.
    C. Bona, J. Masso, E. Seidel, J. Stela, A new formalism for numerical relativity. Phys. Rev. Lett. 75, 600–603 (1995), arXiv:gr-qc/9412071 [grspsqc]ADSCrossRefGoogle Scholar
  15. 15.
    M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D. Pollney et al., Gauge conditions for long term numerical black hole evolutions without excision. Phys. Rev. D 67, 084023 (2003), arXiv:gr-qc/0206072 [grspsqc]
  16. 16.
    C. Bona, T. Ledvinka, C. Palenzuela, M. Zacek, General covariant evolution formalism for numerical relativity. Phys. Rev. D 67, 104005 (2003), arXiv:gr-qc/0302083 [grspsqc]
  17. 17.
    C. Gundlach, J.M. Martin-Garcia, G. Calabrese, I. Hinder, Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Gravity 22, 3767–3774 (2005), arXiv:gr-qc/0504114 [grspsqc]MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Bernuzzi, D. Hilditch, Constraint violation in free evolution schemes: comparing BSSNOK with a conformal decomposition of Z4. Phys. Rev. D 81, 084003 (2010), arXiv:0912.2920 [grspsqc]
  19. 19.
    D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85, 064040 (2012), arXiv:1106.2254 [grspsqc]
  20. 20.
    F. Pretorius, Numerical relativity using a generalized harmonic decomposition. Class. Quantum Gravity 22, 425–452 (2005), arXiv:gr-qc/0407110 [grspsqc]ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Alcubierre, Introduction to 3+1 Numerical Relativity. International Series of Monographs on Physics (Oxford University Press, Oxford, 2008),
  22. 22.
    T. Baumgarte, S. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010),
  23. 23.
    M. Campanelli, C. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006), arXiv:gr-qc/0511048 [grspsqc]
  24. 24.
    H.-J. Yo, T.W. Baumgarte, S.L. Shapiro, Improved numerical stability of stationary black hole evolution calculations. Phys. Rev. D 66, 084026 (2002), arXiv:gr-qc/0209066 [grspsqc]
  25. 25.
    O. Sarbach, G. Calabrese, J. Pullin, M. Tiglio, Hyperbolicity of the BSSN system of Einstein evolution equations. Phys. Rev. D 66, 064002 (2002), arXiv:gr-qc/0205064 [grspsqc]
  26. 26.
    G.B. Cook, Initial data for numerical relativity. Living Rev. Relativ. 3, 5 (2000), arXiv:gr-qc/0007085 [grspsqc]
  27. 27.
    J.W. York Jr., Conformal ‘thin sandwich’ data for the initial-value problem. Phys. Rev. Lett. 82, 1350–1353 (1999), arXiv:gr-qc/9810051 [grspsqc]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006), arXiv:gr-qc/0511103 [grspsqc]
  29. 29.
    M. Hannam, S. Husa, F. Ohme, B. Bruegmann, N. O’Murchadha, Wormholes and trumpets: the Schwarzschild spacetime for the moving-puncture generation. Phys. Rev. D 78, 064020 (2008), arXiv:0804.0628 [grspsqc]
  30. 30.
    M. Hannam, S. Husa, D. Pollney, B. Bruegmann, N. O’Murchadha, Geometry and regularity of moving punctures. Phys. Rev. Lett. 99, 241102 (2007), arXiv:gr-qc/0606099 [grspsqc]
  31. 31.
    Cosmology: Cosmology Part III Mathematical Tripos, Daniel Baumann,
  32. 32.
    S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008),
  33. 33.
    E.J. Copeland, E.W. Kolb, A.R. Liddle, J.E. Lidsey, Reconstructing the inflation potential, in principle and in practice. Phys. Rev. D48, 2529–2547 (1993), arXiv:hep-ph/9303288 [hep-ph]ADSCrossRefGoogle Scholar
  34. 34.
    A.R. Liddle, D.H. Lyth, COBE, gravitational waves, inflation and extended inflation. Phys. Lett. B291, 391–398 (1992), arXiv:astro-ph/9208007 [astro-ph]ADSCrossRefGoogle Scholar
  35. 35.
    M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    C. Gundlach, J.M. Martin-Garcia, Critical phenomena in gravitational collapse. Living Rev. Relativ. 10, 5 (2007), arXiv:0711.4620 [grspsqc]
  37. 37.
    L. Smarr, J.W. York Jr., Kinematical conditions in the construction of space-time. Phys. Rev. D 17, 2529–2551 (1978)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Akbarian, M.W. Choptuik, Black hole critical behavior with the generalized BSSN formulation. Phys. Rev. D92(8), 084037 (2015), arXiv:1508.01614 [grspsqc]

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations