Advertisement

Introduction

  • Katy CloughEmail author
Chapter
  • 253 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter provides an overview of the key background to the work in this thesis. The main themes are General Relativity (GR), its numerical formulation in Numerical Relativity (NR), and Scalar Fields (SF) coupled to gravity. These are considered in Sects. 1.1, 1.2 and 1.3 respectively.

References

  1. 1.
    T. Baumgarte, S. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010), https://books.google.co.uk/books?id=dxU1OEinvRUC
  2. 2.
    I.B. Cohen, Introduction to Newton’s “Principia”. HUP (1978)Google Scholar
  3. 3.
    J.A. Wheeler, Geons, Black Holes and Quantum Foam: A Life in Physics (W.W. Norton, New York, 1998)Google Scholar
  4. 4.
    Wikimedia commons: the free media repository, https://commons.wikimedia.org/
  5. 5.
    R.V. Pound, G.A. Rebka, Gravitational red-shift in nuclear resonance. Phys. Rev. Lett. 3, 439–441 (1959),  https://doi.org/10.1103/PhysRevLett.3.439ADSCrossRefGoogle Scholar
  6. 6.
    M. Bartelmann, Gravitational lensing. Class. Quantum Gravity 27, 233001 (2010), arXiv:1010.3829 [astro-ph.CO]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.W.F. Everitt, D.B. DeBra, B.W. Parkinson, J.P. Turneaure, J.W. Conklin, M.I. Heifetz, G.M. Keiser, A.S. Silbergleit, T. Holmes, J. Kolodziejczak, M. Al-Meshari, J.C. Mester, B. Muhlfelder, V.G. Solomonik, K. Stahl, P.W. Worden, W. Bencze, S. Buchman, B. Clarke, A. Al-Jadaan, H. Al-Jibreen, J. Li, J.A. Lipa, J.M. Lockhart, B. Al-Suwaidan, M. Taber, S. Wang, Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011).  https://doi.org/10.1103/PhysRevLett.106.221101
  8. 8.
    K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 189–196 (1916), arXiv:physics/9905030 [physics]
  9. 9.
    M.S. Morris, K.S. Thorne, Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56(5), 395–412 (1988), http://scitation.aip.org/content/aapt/journal/ajp/56/5/10.1119/1.15620ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963).  https://doi.org/10.1103/PhysRevLett.11.237ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Reissner, ber die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der Physik 355(9), 106–120 (1916).  https://doi.org/10.1002/andp.19163550905ADSCrossRefGoogle Scholar
  12. 12.
    E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918–919 (1965), http://scitation.aip.org/content/aip/journal/jmp/6/6/10.1063/1.1704351ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Planck Collaboration, R. Adam, P.A.R. Ade, N. Aghanim, Y. Akrami, M.I.R. Alves, F. Argeso, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A.J. Banday, R.B. Barreiro, J.G. Bartlett, N. Bartolo, S. Basak, P. Battaglia, E. Battaner, R. Battye, K. Benabed, A. Benot, A. Benoit-Lvy, J.-P. Bernard, M. Bersanelli, B. Bertincourt, P. Bielewicz, I. Bikmaev, J.J. Bock, H. Bhringer, A. Bonaldi, L. Bonavera, J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher, R. Burenin, C. Burigana, R.C. Butler, E. Calabrese, J.-F. Cardoso, P. Carvalho, B. Casaponsa, G. Castex, A. Catalano, A. Challinor, A. Chamballu, R.-R. Chary, H.C. Chiang, J. Chluba, G. Chon, P.R. Christensen, S. Church, M. Clemens, D.L. Clements, S. Colombi, L.P.L. Colombo, C. Combet, B. Comis, D. Contreras, F. Couchot, A. Coulais, B.P. Crill, M. Cruz, A. Curto, F. Cuttaia, L. Danese, R.D. Davies, R.J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, J.-M. Delouis, F.-X. Dsert, E. Di Valentino, C. Dickinson, J.M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Dor, M. Douspis, A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, P.R.M. Eisenhardt, F. Elsner, T.A. Enlin, H.K. Eriksen, E. Falgarone, Y. Fantaye, M. Farhang, S. Feeney, J. Fergusson, R. Fernandez-Cobos, F. Feroz, F. Finelli, E. Florido, O. Forni, M. Frailis, A.A. Fraisse, C. Franceschet, E. Franceschi, A. Frejsel, A. Frolov, S. Galeotta, S. Galli, K. Ganga, C. Gauthier, R.T. Gnova-Santos, M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Hraud, E. Giusarma, E. Gjerlw, J. Gonzilez-Nuevo, K.M. Grski, K.J.B. Grainge, S. Gratton, A. Gregorio, A. Gruppuso, J.E. Gudmundsson, J. Hamann, W. Handley, F.K. Hansen, D. Hanson, D.L. Harrison, A. Heavens, G. Helou, S. Henrot-Versill, C. Hernindez-Monteagudo, D. Herranz, S.R. Hildebrandt, E. Hivon, M. Hobson, W.A. Holmes, A. Hornstrup, W. Hovest, Z. Huang, K.M. Huffenberger, G. Hurier, S. Ili, A.H. Jaffe, T.R. Jaffe, T. Jin, W.C. Jones, M. Juvela, A. Karakci, E. Keihnen, R. Keskitalo, I. Khamitov, K. Kiiveri, J. Kim, T.S. Kisner, R. Kneissl, J. Knoche, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, F. Lacasa, G. Lagache, A. Lhteenmki, J.-M. Lamarre, M. Langer, A. Lasenby, M. Lattanzi, C.R. Lawrence, M. Le Jeune, J.P. Leahy, E. Lellouch, R. Leonardi, J. Len-Tavares, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P.B. Lilje, M. Lilley, M. Linden-Vrnle, V. Lindholm, H. Liu, M. Lpez-Caniego, P.M. Lubin, Y.-Z. Ma, J.F. Macas-Prez, G. Maggio, D. Maino, D.S.Y. Mak, N. Mandolesi, A. Mangilli, A. Marchini, A. Marcos-Caballero, D. Marinucci, M. Maris, D.J. Marshall, P.G. Martin, M. Martinelli, E. Martnez-Gonzilez, S. Masi, S. Matarrese, P. Mazzotta, J.D. McEwen, P. McGehee, S. Mei, P.R. Meinhold, A. Melchiorri, J.-B. Melin, L. Mendes, A. Mennella, M. Migliaccio, K. Mikkelsen, M. Millea, S. Mitra, M.-A. Miville-Deschnes, D. Molinari, A. Moneti, L. Montier, R. Moreno, G. Morgante, D. Mortlock, A. Moss, S. Mottet, M. Mnchmeyer, D. Munshi, J.A. Murphy, A. Narimani, P. Naselsky, A. Nastasi, F. Nati, P. Natoli, M. Negrello, C.B. Netterfield, H.U. Nrgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, M. Olamaie, N. Oppermann, E. Orlando, C.A. Oxborrow, F. Paci, L. Pagano, F. Pajot, R. Paladini, S. Pandolfi, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T.J. Pearson, M. Peel, H.V. Peiris, V.-M. Pelkonen, O. Perdereau, L. Perotto, Y.C. Perrott, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, D. Pogosyan, E. Pointecouteau, G. Polenta, L. Popa, G.W. Pratt, G. Przeau, S. Prunet, J.-L. Puget, J.P. Rachen, B. Racine, W.T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, M. Roman, E. Romelli, C. Rosset, M. Rossetti, A. Rotti, G. Roudier, B. Rouill dOrfeuil, M. Rowan-Robinson, J.A. Rubio-Martn, B. Ruiz-Granados, C. Rumsey, B. Rusholme, N. Said, V. Salvatelli, L. Salvati, M. Sandri, H.S. Sanghera, D. Santos, R.D.E. Saunders, A. Sauv, M. Savelainen, G. Savini, B.M. Schaefer, M.P. Schammel, D. Scott, M.D. Seiffert, P. Serra, E.P.S. Shellard, T.W. Shimwell, M. Shiraishi, K. Smith, T. Souradeep, L.D. Spencer, M. Spinelli, S.A. Stanford, D. Stern, V. Stolyarov, R. Stompor, A.W. Strong, R. Sudiwala, R. Sunyaev, P. Sutter, D. Sutton, A.-S. Suur-Uski, J.-F. Sygnet, J.A. Tauber, D. Tavagnacco, L. Terenzi, D. Texier, L. Toffolatti, M. Tomasi, M. Tornikoski, D. Tramonte, M. Tristram, A. Troja, T. Trombetti, M. Tucci, J. Tuovinen, M. Trler, G. Umana, L. Valenziano, J. Valiviita, F. Van Tent, T. Vassallo, L. Vibert, M. Vidal, M. Viel, P. Vielva, F. Villa, L.A. Wade, B. Walter, B.D. Wandelt, R. Watson, I.K. Wehus, N. Welikala, J. Weller, M. White, S.D.M. White, A. Wilkinson, D. Yvon, A. Zacchei, J.P. Zibin, A. Zonca, Planck 2015 results. A A 594, A1 (2016).  https://doi.org/10.1051/0004-6361/201527101
  14. 14.
    Virgo, LIGO Scientific Collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016), arXiv:1602.03837 [gr-qc]
  15. 15.
    A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 354(7), 769–822 (1916)CrossRefGoogle Scholar
  16. 16.
    J. Winicour, Characteristic evolution and matching, arXiv:0810.1903 [gr-qc]
  17. 17.
    Max Planck Institute for Astrophysics: Core Collapse in CFC+, http://www.mpa-garching.mpg.de/181055/Core-Collapse-in-CFC
  18. 18.
    R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997–2027 (2008), arXiv:gr-qc/0405109 [gr-qc]
  19. 19.
    J.W. York Jr., Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, ed. by L.L. Smarr (Cambridge University Press, Cambridge, 1979), pp. 83–126Google Scholar
  20. 20.
    M. Alcubierre, Introduction to 3+1 Numerical Relativity. International Series of Monographs on Physics (Oxford University Press, Oxford, 2008), https://books.google.co.uk/books?id=8IJCmQEACAAJ
  21. 21.
    T. Nakamura, K. Oohara, Y. Kojima, General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1–218 (1987)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Shibata, T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428–5444 (1995)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    T.W. Baumgarte, S.L. Shapiro, On the numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999), arXiv:gr-qc/9810065 [gr-qc]
  24. 24.
    F. Pretorius, Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014 [gr-qc]
  25. 25.
    J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006), arXiv:gr-qc/0511103 [gr-qc]
  26. 26.
    M. Campanelli, C. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006), arXiv:gr-qc/0511048 [gr-qc]
  27. 27.
    F. Pretorius, Numerical relativity using a generalized harmonic decomposition. Class. Quantum Gravity 22, 425–452 (2005), arXiv:gr-qc/0407110 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    MPI Forum: Standardization forum for the Message Passing Interface, http://mpi-forum.org/
  29. 29.
    OpenMP: The OpenMP Architecture Review Board, http://openmp.org/wp/
  30. 30.
    E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani et al., Testing general relativity with present and future astrophysical observations, arXiv:1501.07274 [gr-qc]
  31. 31.
    C.L. Wainwright, M.C. Johnson, A. Aguirre, H.V. Peiris, Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity. JCAP 1410(10), 024 (2014), arXiv:1407.2950 [hep-th]CrossRefGoogle Scholar
  32. 32.
    M.C. Johnson, H.V. Peiris, L. Lehner, Determining the outcome of cosmic bubble collisions in full General Relativity. Phys. Rev. D 85, 083516 (2012), arXiv:1112.4487 [hep-th]
  33. 33.
    V. Cardoso et al., NR/HEP: roadmap for the future. Class. Quantum Gravity 29, 244001 (2012). arXiv:1201.5118 [hep-th]ADSCrossRefGoogle Scholar
  34. 34.
    P.M. Chesler, L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes. JHEP 07, 086 (2014). arXiv:1309.1439 [hep-th]
  35. 35.
    V. Cardoso, L. Gualtieri, C. Herdeiro, U. Sperhake, Exploring new physics frontiers through numerical relativity, arXiv:1409.0014 [gr-qc]
  36. 36.
    M.W. Choptuik, L. Lehner, F. Pretorius, Probing strong field gravity through numerical simulations, arXiv:1502.06853 [gr-qc]
  37. 37.
    T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, J. Shalf, The Cactus framework and toolkit: design and applications, in Vector and Parallel Processing - VECPAR’2002, 5th International Conference. Lecture Notes in Computer Science (Springer, Berlin, 2003)Google Scholar
  38. 38.
    F. Loffler et al., The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. Class. Quantum Gravity 29, 115001 (2012), arXiv:1111.3344 [gr-qc]ADSCrossRefGoogle Scholar
  39. 39.
    J.D. Brown, P. Diener, O. Sarbach, E. Schnetter, M. Tiglio, Turduckening black holes: an analytical and computational study. Phys. Rev. D 79, 044023 (2009). arXiv:0809.3533 [gr-qc]ADSCrossRefGoogle Scholar
  40. 40.
    Kranc: Kranc Assembles Numerical Code, http://kranccode.org/
  41. 41.
    U. Sperhake, Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007), arXiv:gr-qc/0606079 [gr-qc]
  42. 42.
    M. Zilhao, H. Witek, U. Sperhake, V. Cardoso, L. Gualtieri, C. Herdeiro, A. Nerozzi, Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests. Phys. Rev. D 81, 084052 (2010), arXiv:1001.2302 [gr-qc]
  43. 43.
    P. Marronetti, W. Tichy, B. Bruegmann, J. Gonzalez, M. Hannam, S. Husa, U. Sperhake, Binary black holes on a budget: simulations using workstations. Class. Quantum Gravity 24, S43–S58 (2007), arXiv:gr-qc/0701123 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    P. Galaviz, B. Bruegmann, Z. Cao, Numerical evolution of multiple black holes with accurate initial data. Phys. Rev. D 82, 024005 (2010), arXiv:1004.1353 [gr-qc]
  45. 45.
    The Einstein Toolkit, http://einsteintoolkit.org/
  46. 46.
    H.P. Pfeiffer, L.E. Kidder, M.A. Scheel, S.A. Teukolsky, A multidomain spectral method for solving elliptic equations. Comput. Phys. Commun. 152, 253–273 (2003), arXiv:gr-qc/0202096 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    D. Hilditch, A. Weyhausen, B. Bruegmann, A Pseudospectral Method for Gravitational Wave Collapse, arXiv:1504.04732 [gr-qc]
  48. 48.
    PAMR (Parallel Adaptive Mesh Refinement) and AMRD (Adaptive Mesh Refinement Driver) libraries, http://laplace.physics.ubc.ca/Group/Software.html
  49. 49.
    D. Neilsen, E.W. Hirschmann, M. Anderson, S.L. Liebling, Adaptive mesh refinement and relativistic MHD, in Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories. Proceedings, 11th Marcel Grossmann Meeting, MG11, Berlin, Germany, July 23–29, 2006. Pt. A-C (2007), pp. 1579–1581, arXiv:gr-qc/0702035 [GR-QC]
  50. 50.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).  https://doi.org/10.1103/PhysRevLett.13.508ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964).  https://doi.org/10.1103/PhysRevLett.13.585ADSCrossRefGoogle Scholar
  53. 53.
    V.L. Ginzburg, L.D. Landau, On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)Google Scholar
  54. 54.
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)ADSCrossRefGoogle Scholar
  55. 55.
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982)ADSCrossRefGoogle Scholar
  56. 56.
    A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)ADSCrossRefGoogle Scholar
  58. 58.
    BICEP: BICEP2 2014 Release Image Gallery, http://bicepkeck.org/visuals.html
  59. 59.
    M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations