Skip to main content

pH Responsive Reversibly Tunable Wetting Surfaces

  • Chapter
  • First Online:
Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces

Part of the book series: Biologically-Inspired Systems ((BISY,volume 11))

  • 1338 Accesses

Abstract

Smart surfaces with tunable wetting characteristics have recently gained a lot of attention from scientists and engineers due to the interesting underlying fundamentals as well as tremendous applications in areas including microfluidics, lab-on-a-chip, bio-adhesion, oil-water separation, analytical and medical applications to name a few. Surface wettability can either be tuned by passive methods where different surface energy materials are coated on a surface depending upon the requirement. Alternatively, the surface wettability can be tuned actively where a responsive coating is coated on a surface and the wettability can be tuned with respective external stimulus e.g. light, temperature, pH, electric field, magnetic field, mechanical strain etc. Surfaces with pH responsive wetting behaviour allow control of liquids with high precision which is essentially required in many fluidic devices. Compared to other responsive wetting surfaces, pH responsive wetting surfaces are easy to fabricate and are more stable as well. They also show improved reversible transition between hydrophilic and hydrophobic states with much smaller hysteresis. In this chapter, we discuss various studies involving pH responsive wetting/dewetting system with fundamentals as well as potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrova L, Grigorov L, Khristov K, Petkova H (2017) Effects of pH on wetting behavior of ‘star-like’ block copolymer surfactant solutions. Colloids Surf A Physicochem Eng Asp 519:78–86

    Article  CAS  Google Scholar 

  • Bain CD, Whitesides GM (1989) A study by contact angle of the acid-base behavior of monolayers containing o-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir 5:1370–1378

    Article  CAS  Google Scholar 

  • Barman J, Swain D, Law BM, Seemann R, Herminghaus S, Khare K (2015) Electrowetting actuated microfluidic transport in surface grooves with triangular cross section. Langmuir 31:1231–1236

    Article  CAS  Google Scholar 

  • Barman J, Pant R, Nagarajan AK, Khare K (2017) Electrowetting on dielectrics on lubricating fluid-infused smooth/rough surfaces with negligible hysteresis. J Adhes Sci Technol 31:159–170

    Article  CAS  Google Scholar 

  • Binks BP, Murakami R, Armes SP, Fujii S, Schmid A (2007) PH-responsive aqueous foams stabilized by ionizable latex particles. Langmuir 23:8691–8694

    Article  CAS  Google Scholar 

  • Brinkmann M, Khare K, Seemann R (2007) Control of liquids by surface energies. In: Hardt S, Schönfrld F (eds) Microfluidic Technologies for Miniaturized Analysis Systems. Springer, Boston, pp 157–202

    Chapter  Google Scholar 

  • Cao Y, Liu N, Fu C, Li K, Tao L, Feng L, Wei Y (2014) Thermo and pH dual-responsive materials for controllable oil/water separation. ACS Appl Mater Interfaces 6:2026–2030

    Article  CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Cheng Z, Lai H, Du M, Zhu S, Zhang N, Sun K (2012a) Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH. Soft Matter 8:9635–9641

    Article  CAS  Google Scholar 

  • Cheng Q, Li M, Yang F, Liu M, Li L, Wang S, Jiang L (2012b) An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter 8:6740–6743

    Article  CAS  Google Scholar 

  • Cheng M, Liu Q, Ju G, Zhang Y, Jiang L, Shi F (2014a) Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface. Adv Mater 26:306–310

    Article  CAS  Google Scholar 

  • Cheng Z, Lai H, Du Y, Fu K, Hou R, Li C, Zhang N, Sun K (2014b) PH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity. ACS Appl Mater Interf 6:636–641

    Article  CAS  Google Scholar 

  • Cheng Z, Wang J, Lai H, Du Y, Hou R, Li C, Zhang N, Sun K (2015) PH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir 31:1393–1399

    Article  CAS  Google Scholar 

  • Chia KK, Rubner MF, Cohen RE (2009) PH-responsive reversibly swellable nanotube arrays. Langmuir 25(24):14044–14052

    Article  CAS  Google Scholar 

  • Dang Z, Liu L, Li Y, Xiang Y, Guo G (2016) In situ and ex situ pH-responsive coatings with switchable wettability for controllable oil/water separation. ACS Appl Mater Interfaces 8:31281–31288

    Article  CAS  Google Scholar 

  • Escalé P, Van Camp W, Du Prez F, Rubatat L, Billon L, Save M (2013) Highly structured pH-responsive honeycomb films by a combination of a breath figure process and in situ thermolysis of a polystyrene-block-poly(ethoxy ethyl acrylate) precursor. Polym Chem 4:4710–4717

    Google Scholar 

  • Fujii S, Suzaki M, Armes SP, Dupin D, Hamasaki S, Aono K, Nakamura Y (2011) Liquid marbles prepared from pH-responsive sterically stabilized latex particles. Langmuir 27:8067–8074

    Article  CAS  Google Scholar 

  • Gao Y, Cheng M, Wang B, Feng Z, Shi F (2010) Diving-surfacing cycle within a stimulus-responsive smart device towards developing functionally cooperating systems. Adv Mater 22:5125–5128

    Article  CAS  Google Scholar 

  • Geng Z, Guan S, Jiang HM, Gao LC, Liu ZW, Jiang L (2014) PH-sensitive wettability induced by topological and chemical transition on the self assembled surface of block copolymer. Chin J Polym Sci (English Edition) 32:92–97

    Article  CAS  Google Scholar 

  • Guo Y, Xia F, Xu L, Li J, Yang W, Jiang L (2010) Switchable wettability on cooperative dual-responsive poly-L-lysine surface. Langmuir 26:1024–1028

    Article  CAS  Google Scholar 

  • Holmes-Farley RS, Bain CD, Whitesides GM (1988) Wetting of functionalized polyethylene film having ionizable organic acids and bases at the polymer-water interface: relations between functional group polarity, extent of ionization, and contact angle with water. Langmuir 4:921–937

    Article  CAS  Google Scholar 

  • Janorkar AV, Metters AT, Hirt DE (2004) Modification of poly(lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 37:9151–9159

    Article  CAS  Google Scholar 

  • Jiang Y, Wang Z, Yu X, Shi F, Xu H, Zhang X, Smet M, Dehaen W (2005) Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir 21:1986–1990

    Article  CAS  Google Scholar 

  • Jiang Y, Wan P, Smet M, Wang Z, Zhang X (2008) Self-assembled monolayers of a malachite green derivative: surfaces with pH- and UV-responsive wetting properties. Adv Mater 20:1972–1977

    Article  CAS  Google Scholar 

  • Ju G, Cheng M, Shi F (2014) A pH-responsive smart surface for the continuous separation of oil/water/oil ternary mixtures. NPG Asia Mater 6:e111

    Article  CAS  Google Scholar 

  • Khare K, Brinkmann M, Law BM, Herminghaus S, Seemann R (2007) Switching wetting morphologies in triangular grooves. Eur Phys J Spec Top 166:151

    Article  Google Scholar 

  • Klemm O, Riederer M, Frevert T (1987) pH-response on leaves and isolated cuticles of Hedera helix L. after wetting with artificial rainwater. Environ Exp Bot 27:349–355

    Article  Google Scholar 

  • Kulkarni SA, Lyles VD, Serem WK, Lu L, Kumar R, Garno JC (2014) Solvent-responsive properties of octadecyltrichlorosiloxane nanostructures investigated using atomic force microscopy in liquid. Langmuir 30:5466–5473

    Article  CAS  Google Scholar 

  • Lee CH, Kang SK, Lim JA, Lim HS, Cho JH (2012) Electrospun smart fabrics that display pH-responsive tunable wettability. Soft Matter 8:10238–10240

    Article  CAS  Google Scholar 

  • Li J, Chen XR, Chang YC (2005) Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers. Langmuir 21:9562–9567

    Article  CAS  Google Scholar 

  • Li JJ, Zhou YN, Jiang ZD, Luo ZH (2016a) Electrospun fibrous mat with pH-switchable superwettability that can separate layered oil/water mixtures. Langmuir 32:13358–13366

    Article  CAS  Google Scholar 

  • Li T, Shen J, Zhang Z, Wang S, Wei D (2016b) A poly(2-(dimethylamino)ethyl methacrylate-co-methacrylic acid) complex induced route to fabricate a super-hydrophilic hydrogel and its controllable oil/water separation. RSC Adv 6:40656–40663

    Article  CAS  Google Scholar 

  • Liu X, Ye Q, Song X, Zhu Y, Cao X, Liang Y, Zhou F (2011) Responsive wetting transition on superhydrophobic surfaces with sparsely grafted polymer brushes. Soft Matter 7:515–523

    Article  CAS  Google Scholar 

  • Liu M, Xue Z, Liu H, Jiang L (2012) Surface wetting in liquid-liquid-solid triphase systems: solid-phase-independent transition at the liquid-liquid interface by lewis acid-base interactions. Angew Chem Int Ed 51:8348–8351

    Article  CAS  Google Scholar 

  • Lu Y, Zhuk A, Xu L, Liang X, Kharlampieva E, Sukhishvili SA (2013a) Tunable pH and temperature response of weak polyelectrolyte brushes: role of hydrogen bonding and monomer hydrophobicity. Soft Matter 9:5464–5472

    Article  CAS  Google Scholar 

  • Lu Y, Sarshar MA, Du K, Chou T, Choi CH, Sukhishvili SA (2013b) Large-amplitude, reversible, pH-triggered wetting transitions enabled by layer-by-layer films. ACS Appl Mater Interf 5:12617–12623

    Article  CAS  Google Scholar 

  • Lu Z, Peng S, Zhang X, Liu Q (2016) Microwetting of pH-sensitive surface and anisotropic MoS2 surfaces revealed by femtoliter sessile droplets. Langmuir 32:11273–11279

    Article  CAS  Google Scholar 

  • Lv Y, Cao Y, Svec F, Tan T (2014) Porous polymer-based monolithic layers enabling pH triggered switching between superhydrophobic and superhydrophilic properties. Chem Commun 50:13809–13812

    Article  CAS  Google Scholar 

  • Magalhães M, Neto AMF, Bee A, Talbot D, Bourdon A (2005) Wetting of glass surface covered with Teflon by ferrofluid as a function of concentration and size of grains, and pH of the solution. J Magn Magn Mater 289:385–388

    Article  Google Scholar 

  • Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466

    Article  CAS  Google Scholar 

  • Motornov M, Sheparovych R, Lupitskyy R, MacWilliams E, Minko S (2007) Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces. J Colloid Interface Sci 310:481–488

    Article  CAS  Google Scholar 

  • Müller C, Lüders Z, Hoth-Hannig W, Hannig M, Ziegler C (2010) Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point. Langmuir 26:4136–4141

    Article  Google Scholar 

  • Narkar AR, Barker B, Clisch M, Jiang J, Lee BP (2016) PH responsive and oxidation resistant wet adhesive based on reversible catechol-boronate complexation. Chem Mater 28:5432–5439

    Article  CAS  Google Scholar 

  • Pan S, Guo R, Xu W (2014) Durable superoleophobic fabric surfaces with counterintuitive superwettability for polar solvents. AICHE J 60:2752–2756

    Article  CAS  Google Scholar 

  • Pant R, Singha S, Bandyopadhyay A, Khare K (2014) Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces. Appl Surf Sci 292:777–781

    Article  CAS  Google Scholar 

  • Rios F, Smirnov SN (2011) PH valve based on hydrophobicity switching. Chem Mater 23:3601–3605

    Article  CAS  Google Scholar 

  • San Miguel A, Behrens SH (2011) Permeability control in stimulus-responsive colloidosomes. Soft Matter 7:1948–1956

    Article  CAS  Google Scholar 

  • Sinha MK, Purkait MK (2014) Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltration membrane. J Membr Sci 464:20–32

    Article  CAS  Google Scholar 

  • Su X, Li H, Lai X, Zhang L, Liang T, Feng Y, Zeng X (2017) Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: fabrication, reversibly extreme wettability and oil-water separation. ACS Appl Mater Interfaces 9:3131–3141

    Article  CAS  Google Scholar 

  • Sun W, Zhou S, You B, Wu L (2013) Polymer brush-functionalized surfaces with unique reversible double-stimulus responsive wettability. J Mater Chem A 1:10646–10654

    Article  CAS  Google Scholar 

  • Tang J, Berry RM, Tam KC (2016) Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting. Biomacromolecules 17:1748–1756

    Article  CAS  Google Scholar 

  • Treat ND, Ayres N, Boyes SG, Brittain WJ (2006) A facile route to poly(acrylic acid) brushes using atom transfer radical polymerization. Macromolecules 39:26–29

    Article  CAS  Google Scholar 

  • Tu F, Lee D (2014) Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J Am Chem Soc 136:9999–10006

    Article  CAS  Google Scholar 

  • Uhlmann P, Ionov L, Houbenov N, Nitschke M, Grundke K, Motornov M, Minko S, Stamm M (2006) Surface functionalization by smart coatings: stimuli-responsive binary polymer brushes. Prog Org Coat 55:168–174

    Article  CAS  Google Scholar 

  • Wang Y, Chang YC (2003) Synthesis and conformational transition of surface-tethered polypeptide: poly(L-lysine). Macromolecules 36:6511–6518

    Article  CAS  Google Scholar 

  • Wang B, Guo Z (2013) PH-responsive bidirectional oil-water separation material. Chem Commun 49:9416–9418

    Article  CAS  Google Scholar 

  • Wang CF, Wang YT, Tung PH, Kuo SW, Lin CH, Sheen YC, Chang FC (2006) Stable superhydrophobic polybenzoxazine surfaces over a wide pH range. Langmuir 22:8289–8292

    Article  CAS  Google Scholar 

  • Wang S, Liu H, Liu D, Ma X, Fang X, Jiang L (2007) Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed 46:3915–3917

    Article  CAS  Google Scholar 

  • Wang B, Guo Z, Liu W (2014) PH-responsive smart fabrics with controllable wettability in different surroundings. RSC Adv 4:14684–14690

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  • Wu J, Jiang Y, Jiang D, He J, Cai G, Wang J (2015) The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation. Mater Lett 160:384–387

    Article  CAS  Google Scholar 

  • Xia F, Ge H, Hou Y, Sun T, Chen L, Zhang G, Jiang L (2007) Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater 19:2520–2524

    Article  CAS  Google Scholar 

  • Xia F, Zhu Y, Feng L, Jiang L (2009) Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. Soft Matter 5:275–281

    Article  CAS  Google Scholar 

  • Xiang Y, Shen J, Wang Y, Liu F, Xue L (2015) A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water. RSC Adv 5:23530–23539

    Article  CAS  Google Scholar 

  • Xiao M, Cheng M, Zhang Y, Shi F (2013) Combining the Marangoni effect and the pH-responsive superhydrophobicity-superhydrophilicity transition to biomimic the locomotion process of the beetles of genus Stenus. Small 9:2509–2514

    Article  CAS  Google Scholar 

  • Xiao M, Guo X, Cheng M, Ju G, Zhang Y, Shi F (2014) PH-responsive on-off motion of a superhydrophobic boat: towards the design of a minirobot. Small 10:859–865

    Article  CAS  Google Scholar 

  • Xin B, Hao J (2010) Reversibly switchable wettability. Chem Soc Rev 39:769–782

    Article  CAS  Google Scholar 

  • Xu C, Wayland BB, Fryd M, Winey KI, Composto RJ (2006) pH-responsive nanostructures assembled from amphiphilic block copolymers. Macromolecules 39:6063–6070

    Article  CAS  Google Scholar 

  • Xu J, Shuai Y, Zhou L, Kesong L, Lei L (2012) Bio-inspired special wetting surfaces via self-assembly. Sci China: Chem 55:2327–2333

    Article  Google Scholar 

  • Xu Z, Zhao Y, Wang H, Zhou H, Qin C, Wang X, Lin T (2016) Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation. ACS Appl Mater Interf 8:5661–5667

    Article  CAS  Google Scholar 

  • Yan X, Li J, Yi L (2017) Fabrication of pH-responsive hydrophilic/hydrophobic Janus cotton fabric via plasma-induced graft polymerization. Mater Lett 208:46–49

    Article  CAS  Google Scholar 

  • Ye Y, Mao Y, Wang H, Ren Z (2012) Hybrid structure of pH-responsive hydrogel and carbon nanotube array with superwettability. J Mater Chem 22:2449–2455

    Article  CAS  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  • Yu X, Wang Z, Jiang Y, Shi F, Zhang X (2005) Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Adv Mater 17:1289–1293

    Article  CAS  Google Scholar 

  • Zhang Y, Guo Z (2014) PH-responsive wettable fabrics with hierarchical structures. Chem Lett 43:553–555

    Article  Google Scholar 

  • Zhang Q, Xia F, Sun T, Song W, Zhao T, Liu M, Jiang L (2008) Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer. Chem Commun:1199–1201

    Google Scholar 

  • Zhang L, Zhang Z, Wang P (2012) Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Mater 4:e8

    Article  Google Scholar 

  • Zhu Y, Shi M, Wu X, Yang S (2007) Amphiphilic copolymer grafted “smart surface” enhanced by surface roughness. J Colloid Interf Sci 315:580–587

    Article  CAS  Google Scholar 

Download references

Acknowledgement

KK acknowledges financial assistance from BRNS (DAE) Young Scientist Research Award and DST, New Delhi through its Unit of Excellence on Soft Nanofabrication at IIT Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnacharya Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, R., Dattatreya, S., Barman, J., Khare, K. (2018). pH Responsive Reversibly Tunable Wetting Surfaces. In: Hozumi, A., Jiang, L., Lee, H., Shimomura, M. (eds) Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces. Biologically-Inspired Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-92654-4_3

Download citation

Publish with us

Policies and ethics