Skip to main content

Photo-Responsive Superwetting Surface

  • Chapter
  • First Online:

Part of the book series: Biologically-Inspired Systems ((BISY,volume 11))

Abstract

Photo-responsive surfaces, especially for the photo-responsive superwetting surface, have aroused great interests in smart control devices for a few years due to their remote control and selectivity. This chapter focuses on the photo-responsive wettability on the superwetting surface and their typical applications, particularly on switchable wettability on photo-responsive surfaces and their applications such as droplet actuation, adhesion control, liquid printing and oil-water separation. Finally, our personal point of the prospects and challenges of the photo-responsive wettability surfaces are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrakhi S, Péralta S, Fichet O, Teyssié D, Cantin S (2013) Poly(azobenzene acrylate-co-fluorinated acrylate) spin-coated films: influence of the composition on the photo-controlled wettability. Langmuir 29:9499–9509

    Article  CAS  PubMed  Google Scholar 

  • Baigl D (2012) Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12:3637–3653

    Article  CAS  PubMed  Google Scholar 

  • Berná J, Leigh DA, Lubomska M, Mendoza SM, Pérez EM, Rudolf P (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4:704–710

    Article  PubMed  Google Scholar 

  • Blasco E, Piñol M, Oriol L, Schmidt BVKJ, Welle A, Trouillet V (2013) Photochemical generation of light responsive surfaces. Adv Funct Mater 23:4011–4019

    Article  CAS  Google Scholar 

  • Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256:1539–1541

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang W, Su B, Wen Y, Li C, Zhou Y, Li M, Shi X, Du H, Song Y, Jiang L (2014) A light-responsive release platform by controlling the wetting behavior of hydrophobic surface. ACS Nano 8:744–751

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Zhou S, Yang S, Wu L (2015) Fabrication of all water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv Funct Mater 25:1035–1041

    Article  CAS  Google Scholar 

  • Chen L, He C, Huang Y, Huang J, Zhang Y, Gao Y (2016) Poss based fluorinated azobenzene-containing polymers: photo-responsive behavior and evaluation of water repellency. J Appl Polym Sci 133:43540

    Google Scholar 

  • Choi W, Tuteja A, Chhatre S, Mabry JM, Cohen RE, Mckinley GH (2009) Fabrics with tunable oleophobicity. Adv Mater 21:2190–2195

    Article  CAS  Google Scholar 

  • Di H, Arisaka Y, Masuda K, Yamamoto M, Takeda N (2017) A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer. Acta Biomater 51:101–111

    Article  Google Scholar 

  • Dong T, Cao S, Xu G (2016) Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water. J Hazard Mater 305:1–7

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858

    Article  Google Scholar 

  • Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc 126:62–63

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44:5115–5118

    Article  CAS  Google Scholar 

  • Feng SL, Hou YP, Xue Y, Gao LC, Jiang L, Zheng YM (2013) Photo-controlled water gathering on bio-inspired fibers. Soft Matter 9:9294–9297

    Article  CAS  Google Scholar 

  • Fries K, Samanta S, Orski S, Locklin J (2008) Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers. Chem Commun (47):6288–6300

    Google Scholar 

  • Gao LY, Zheng MJ, Zhong M, Li M, Ma L (2007) Preparation and photoinduced wettability conversion of superhydrophobic β-Ga2O3 nanowire film. Appl Phys Lett 91:013101

    Article  Google Scholar 

  • Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J (2014) Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8:6344–6352

    Article  CAS  PubMed  Google Scholar 

  • Gondal MA, Sadullah MS, Dastageer MA, Mckinley GH, Panchanathan D, Varanasi KK (2014) Study of factors governing oil-water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions. ACS Appl Mater Interfaces 6:13422–13429

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Peng D, Cai S (2007) Highly hydrophilic and superhydrophobic ZnO nanorod array films. Thin Solid Films 515:7162–7166

    Article  CAS  Google Scholar 

  • Hersey JS, Freedman JD, Grinstaff MW (2014) Photoactive electrospun polymeric meshes: spatiotemporally wetting of textured 3-dimensional structures. J Mater Chem B 2:2974–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Lai Y, Wang L, Li S, Ge M, Zhang K (2014) Controllable wettability and adhesion on bioinspired multifunctional TiO2 nanostructure surfaces for liquid manipulation. J Mater Chem A 2:18531–18538

    Article  CAS  Google Scholar 

  • Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288:1624–1626

    Article  CAS  PubMed  Google Scholar 

  • Ikbal M, Banerjee R, Barman S, Atta S, Dhara D, Singh NDP (2014) 1-acetylferroceneoxime-based photoacid generators: application towards sol-gel transformation and development of photoresponsive polymer for controlled wettability and patterned surfaces. J Mater Chem C 2:4622–4630

    Article  CAS  Google Scholar 

  • Ionov L, Minko S, Stamm M, Gohy J, Jérôme R, Scholl A (2003) Reversible chemical patterning on stimuli-responsive polymer film: environment-responsive lithography. J Am Chem Soc 125:8302–8306

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Wang G, He Y, Wang X, An Y, Song Y (2005) Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. Chem Commun (28):3550–3552

    Google Scholar 

  • Jo H, Haberkorn N, Pan JA, Vakili M, Nielsch K, Theato P (2016) Fabrication of chemically tunable, hierarchically branched polymeric nanostructures by multi-branched anodic aluminum oxide templates. Langmuir 32:6437–6444

    Article  CAS  PubMed  Google Scholar 

  • Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55:11183–11187

    Article  CAS  Google Scholar 

  • Kessler D, Jochum FD, Choi J, Char K, Theato P (2011) Reactive surface coatings based on polysilsesquioxanes: universal method toward light-responsive surfaces. ACS Appl Mater Interfaces 3:124–128

    Article  CAS  PubMed  Google Scholar 

  • Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Lin C, Wang H, Huang J, Zhuang H, Sun L (2008) Superhydrophilic-superhydrophobic micropattern on TiO2, nanotube films by photocatalytic lithography. Electrochem Commun 10:387–391

    Article  CAS  Google Scholar 

  • Li XM, Reinhoudt D, Cregocalama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Article  PubMed  Google Scholar 

  • Li C,Zhang Y,Ju J,Cheng F, Liu M,Jiang L,Yu Y (2012a) In situ fully light-driven switching of superhydrophobic adhesion. Adv Funct Mater 22:760–763

    Article  Google Scholar 

  • Li C, Cheng F, Lv J, Zhao Y, Liu M, Jiang L, Yu Y (2012b) Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. Soft Matter 8:3730–3733

    Article  CAS  Google Scholar 

  • Li J, Ling J, Yan L, Wang Q, Zha F, Lei Z (2014) UV mask irradiation and heat induced switching on-off water transportation on superhydrophobic carbon nanotube surfaces. Surf Coat Tech 258:142–145

    Article  CAS  Google Scholar 

  • Lim HS, Han JT, Kwak D, Jin M, Cho K (2006) Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J Am Chem Soc 128:14458–14459

    Article  CAS  PubMed  Google Scholar 

  • Liu KL, Yao X, Jiang L (2010a) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255

    CAS  PubMed  Google Scholar 

  • Liu M, Zheng Y, Zhai J, Jiang L (2010c) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43:368–377

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bo X, Sun S, Jia W, Wu L, Yu Y (2017) Humidity and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv Mater 29:1604792

    Article  Google Scholar 

  • Lv JA, Liu Y, Wei J, Chen E, Qin L, Yu Y (2016) Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537:179–184

    Article  CAS  PubMed  Google Scholar 

  • Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Cheminform abstract: preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv Mater 31:1365–1368

    Google Scholar 

  • Nakata K, Nishimoto S, Kubo A, Tryk D, Ochiai T, Murakami T (2009) Fabrication and application of TiO2-based superhydrophilic-superhydrophobic patterns on titanium substrates for offset printing. Chem Asian J 4:984–988

    Article  CAS  PubMed  Google Scholar 

  • Nakata K, Nishimoto S, Yuda Y, Ochiai T, Murakami T, Fujishima A (2010) Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate. Langmuir 26:11628–11630

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Sekine H, Zhang X, Liu Z, Nakata K, Murakami T (2009a) Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures. Langmuir 25:7226–7228

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Kubo A, Nohara K, Zhang X, Taneichi N, Okui T, Liu Z, Nakata K, Sakai H, Murakami T, Abe M, Komine T, Fujishima A (2009b) TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Appl Surf Sci 255:6221–6225

    Article  CAS  Google Scholar 

  • Nishimoto S, Becchaku M, Kameshima Y, Shirosaki Y, Hayakawa S, Osaka A (2014) TiO2-based superhydrophobic–superhydrophilic pattern with an extremely high wettability contrast. Thin Solid Films 558:221–226

    Article  CAS  Google Scholar 

  • Pan S, Ni M, Mu B, Li Q, Hu X, Lin C (2015) Well defined pillararene-based azobenzene liquid crystalline photoresponsive materials and their thin films with photomodulated surfaces. Adv Funct Mater 25:3571–3580

    Article  CAS  Google Scholar 

  • Paven M, Mayama H, Sekido T, Butt H, Nakamura Y, Fujii S (2016) Liquid marbles: light-driven delivery and release of materials using liquid marbles. Adv Funct Mater 26:3372–3372

    Article  Google Scholar 

  • Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99

    Article  Google Scholar 

  • Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4:224–240

    Article  CAS  PubMed  Google Scholar 

  • Rohit R, Devens GAAG, Mark HJLT, Tclement T (2004) Lotus effect amplifies light-induced contact angle switching. J Phys Chem B 108:12640–12642

    Article  Google Scholar 

  • Sawai Y, Nishimoto S, Kameshima Y, Fujii E, Miyake M (2013) Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir 29:6784–6789

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Qing G, Su B, Jiang L (2011) Functional biointerface materials inspired from nature. Chem Soc Rev 40:2909–2921

    Article  CAS  PubMed  Google Scholar 

  • Tadanaga K, Morinaga J, Atsunori Matsuda A, Minami T (2004) Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem Mater 12:590–592

    Article  Google Scholar 

  • Takase K,Hyodo K,Morimoto M,Kojima Y,Mayama H,Yokojima S,Nakamuraf S, Uchida K (2016) Photoinduced reversible formation of a superhydrophilic surface by crystal growth of diarylethene. Chem Commun 52:6885–6887

    Article  CAS  PubMed  Google Scholar 

  • Tao M, Xue L, Liu F, Jiang L (2014) An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv Mater 26:2943–2948

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Zhang X, Tian Y, Wu Y, Wang X, Zhai J (2012) Photo-induced water-oil separation based on switchable superhydrophobicity- superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. J Mater Chem 22:19652–19657

    Article  CAS  Google Scholar 

  • Tian DL, Song YL, Jiang L (2013a) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42:5184–5209

    CAS  PubMed  Google Scholar 

  • Tian D, Guo Z, Wang Y, Li W, Zhang X, Jin Z (2013b) Phototunable underwater oil adhesion of micro/nanoscale hierarchical-structured ZnO mesh films with switchable contact mode. Adv Funct Mater 24:536–542

    Article  Google Scholar 

  • Tian Y, Su B, Jiang L (2014) Interfacial material system exhibiting superwettability. Adv Mater 26:6872–6897

    Article  CAS  PubMed  Google Scholar 

  • Tylkowski B, Peris S, Giamberini M, Garcia-Valls R, Reina JA, Ronda JC (2010) Light-induced switching of the wettability of novel asymmetrical poly(vinyl-alcohol)-co-ethylene membranes blended with azobenzene polymers. Langmuir 26:14821–14829

    Article  CAS  PubMed  Google Scholar 

  • Ueda E, Levkin PA (2013) Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater 25:1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Wagner N, Theato P (2014) Light-induced wettability changes on polymer surfaces. Polymer 55:3436–3453

    Article  CAS  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  CAS  Google Scholar 

  • Wang S, Feng X, Yao J, Jiang L (2006) Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed 45:1264–1267

    Article  CAS  Google Scholar 

  • Wang S, Song YL, Jiang L (2007) Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C 8:18–29

    CAS  Google Scholar 

  • Wang S, Liu K, Xi Y, Lei J (2015) Bioinspired surfaces with superwettability: new insight on theory, design and applications. Chem Rev 115:8230–8293

    CAS  PubMed  Google Scholar 

  • Waugh DG, Lawrence J (2010) On the use of co laser induced surface patterns to modify the wettability of poly(methyl methacrylate) (pmma). Opt Lasers Eng 48:707–715

    Article  Google Scholar 

  • Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399

    Article  CAS  Google Scholar 

  • Wooh S, Koh JH, Lee S, Yoon H, Char K (2015) Trilevel-structured superhydrophobic pillar arrays with tunable optical functions. Adv Funct Mater 24:5550–5556

    Article  Google Scholar 

  • Xia D, Johnson LM, López GP (2012) Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications. Adv Mater 24:1287–1302

    Article  CAS  PubMed  Google Scholar 

  • Xin B, Hao J (2010) Reversibly switchable wettability. Chem Soc Rev 39:769–782

    Article  CAS  PubMed  Google Scholar 

  • Xu QF, Liu Y, Lin FJ, Mondal B, Lyons AM (2013) Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl Mater Interfaces 5:8915–8924

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460

    Article  CAS  Google Scholar 

  • Yan L, Li J, Li W, Zha F, Feng H, Hu D (2016) A photo-induced ZnO coated mesh for on-demand oil/water separation based on switchable wettability. Mater Lett 163:247–249

    Article  CAS  Google Scholar 

  • Yang D, Piech M, Bell NS, Gust D, Vail S, Garcia AA, Schneider J, Park C-D, Hayes MA, Picraux ST (2007) Photon control of liquid motion on reversibly photoresponsive surfaces. Langmuir 23:10864–10872

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Wang K, Liang Z, Mai W, Wang CX, Xie W (2012) Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects. Nanoscale 4:5755–5760

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Song YL, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23:719–734

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz M, Kuloglu HB, Erdogan H, Cetin SS, Yavuz MS, Ince GO (2015) Light-driven unidirectional liquid motion on anisotropic gold nanorod arrays. Adv Mater Interfaces 2:1500226

    Article  Google Scholar 

  • Zhang J, Han Y (2010) Active and responsive polymer surfaces. Chem Soc Rev 39:676–693

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jin M, Liu Z, Tryk DA, Nishimoto S, Murakami T (2007) Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J Phys Chem C 111:14521–14529

    Article  CAS  Google Scholar 

  • Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    Article  CAS  Google Scholar 

  • Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mater Chem 19:4887–4895

    Article  CAS  Google Scholar 

  • Zhu W, Feng X, Feng L, Jiang L (2006) UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chem Commun (26):2753–2755

    Google Scholar 

  • Zhu H, Yang S, Chen D, Li N, Xu Q, Li H (2016) A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery. Adv Mater Interfaces 3:1500683

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Chinese National Natural Science Foundation (21671012, 21373001, 21601013), Beijing Natural Science Foundation (2172033), the 973 Program (2013CB933004), the Fundamental Research Funds for the Central Universities, and the 111 Project (B14009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, D., Li, Y., Jiang, L. (2018). Photo-Responsive Superwetting Surface. In: Hozumi, A., Jiang, L., Lee, H., Shimomura, M. (eds) Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces. Biologically-Inspired Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-92654-4_2

Download citation

Publish with us

Policies and ethics