Skip to main content

Toward Enviromentally Adaptive Anti-icing Coating

  • Chapter
  • First Online:
Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces

Part of the book series: Biologically-Inspired Systems ((BISY,volume 11))

Abstract

The formation, adhesion, and accumulation of ice and snow on solid surfaces causes multiple problems such as decreased power generation efficiency, increased energy consumption, and mechanical and/or electrical failure. These problems incur huge economic loss and threaten the safety of electrical appliances. Therefore, much effort has been expended in understanding the mechanism of icing and the relationship between liquids and surfaces at low temperatures. By controlling the characteristics of surface features such as wettability, topography, and lubricity, researchers have developed various anti-icing or icephobic coatings. However, despite the multiple propositions and tested scenarios, most of these coatings are insufficiently ice-repellant under a single atmospheric condition, so their applicability is limited in practice. Icing conditions become complex and variable as the surrounding environment changes, demanding a more adaptable ice-resistant surface. This chapter summarizes the most recent progress on passive anti-icing coatings, particularly stimuli-responsive anti-icing coatings with active surface function, prepared by various types of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • “Atmospheric icing of structures”. https://www.iso.org/standard/72443.html

    Google Scholar 

  • Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S, Ge L, Dhinojwala A, Conway KR, Bahadur V et al (2012) Dynamics of ice nucleation on water repellent surfaces. Langmuir 28:3180–3186

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh A, Bahadur V, Kulkarni A, Yamada M, Ruud JA et al (2013) Hydrophobic surfaces for control and enhancement of water phase transitions. MRS Bull 38:407–411

    Article  CAS  Google Scholar 

  • Anand S, Paxson AT, Dhiman R, Smith JD, Varanasi KK et al (2012) Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6:10122–10129

    Article  CAS  PubMed  Google Scholar 

  • Andersson AK, Chapman L (2011) The impact of climate, change on winter road maintenance and traffic accidents, in west Midlands, UK. Accid Anal Prev 43:284–289

    Article  PubMed  Google Scholar 

  • Andrey J, Olley R (1990) The relationship between weather and road safety: past and future research directions. Clim Bull 24:123–136

    Google Scholar 

  • Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A et al (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 67:58–67

    Article  Google Scholar 

  • Arianpour F, Farzaneh M, Kulinich SA (2013) Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl Surf Sci 265:546–552

    Article  CAS  Google Scholar 

  • Ayres J, Simendinger WH, Balik CM (2007) Characterization of titanium alkoxide sol-gel systems designed for anti-icing coatings: I. Chemistry. J Coat Technol Res 4:463–471

    Article  CAS  Google Scholar 

  • Beemer DL, Wang W, Kota AK (2016) Durable gels with ultra-low adhesion to ice. J Mater Chem A 4:18253–18258

    Article  CAS  Google Scholar 

  • Bharathidasan T, Kumar SV, Bobji MS, Chakradhar RPS, Basu BJ et al (2014) Effect of wettability and surface roughness on ice adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Appl Surf Sci 314:241–250

    Article  CAS  Google Scholar 

  • Boinovich LB, Emelyanenko AM (2013) Anti-icing potential of superhydrophobic coatings. Mendeleev Commun 23:3–10

    Article  CAS  Google Scholar 

  • Boinovich LB, Emelyanenko AM, Ivanov VK, Pashinin AS et al (2013) Durable icephobic coating for stainless steel. ACS Appl Mater Interfaces 5:2549–2554

    Article  CAS  PubMed  Google Scholar 

  • Botta G, Cavaliere M, Holttinen H (1998) Ice accretion at aqua spruzza and its effects on wind turbine operation and loss of energy production. In: Proceedings of the international conference, wind energy production in cold climate, BOREAS IV, Hetta, Finland, March 31–April 2

    Google Scholar 

  • Cao L, Jones AK, Sikka VK, Wu J, Gao D et al (2009) Anti-icing superhydrophobic coatings. Langmuir 25:12444–11244

    Article  CAS  PubMed  Google Scholar 

  • Chatterson M, Carson Cook J (2008) “The effects of icing on commercial fishing vessels” an interactive qualifying project report for the United States Coast Guard

    Google Scholar 

  • Chen J, Liu J, He M, Li K, Cui D, Zhang Q, Zeng X, Zhang Y, Wang J, Song Y et al (2012) Superhydrophobic surfaces cannot reduce ice adhesion. Appl Phys Lett 101:111603

    Article  CAS  Google Scholar 

  • Chen J, Dou RM, Cui DP, Zhang QL, Zhang YF, Xu FJ, Zhou X, Wang JJ, Song YL, Jiang L et al (2013) Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater Interfaces 5:4026–4030

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Luo ZQ, Fan QR, Lv JY, Wang JJ et al (2014a) Anti-ice coating inspired by ice skating. Small 10:4693–4699

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Geissler A, Bonaccurso E, Zhang K et al (2014b) Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Interfaces 6:6969–6976

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Gelenter MD, Hong M, Cohen RE, McKinley GH et al (2017) Icephobic surfaces induced by interfacial nonfrozen water. ACS Appl Mater Interfaces 9:4202–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyy S, Jarn M, Shimizu K, Swerin A, Pedersen SU, Daasbjerg K, Makkonen L, Claesson P, Iruthayaraj J et al (2014) Superhydrophilic polyelectrolyte brush layers with imparted anti-icing properties: effect of counter ions. ACS Appl Mater Interfaces 6:6487–6496

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Scavuzzo R (1991) Adhesive shear strength of impact ice. AIAA J 29:1921–1926

    Article  Google Scholar 

  • Dalili N, Edrisy A, Carriveau R (2009) A review of surface, engineering issues critical to wind turbine performance. Renew Sust Energ Rev 13:428–438

    Article  Google Scholar 

  • Davis A, Yeong YH, Steele A, Bayer IS, Loth E et al (2014) Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Appl Mater Interfaces 6:9272–9279

    Article  CAS  PubMed  Google Scholar 

  • Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J et al (2014) Anti-icing coating with an aqueous lubricating layer. ACS Appl Mater Interfaces 6:6998–7003

    Article  CAS  PubMed  Google Scholar 

  • Eifert A, Paulssen D, Varanakkottu SN, Baier T, Hardt S et al (2014) Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Adv Mater Interfaces 1:1300138

    Article  Google Scholar 

  • Emery A, Siegel B (1990) Experimental measurements of the effects of frost formation on heat exchanger performance. Presented at Proceedings of AIAA/ASME thermo physics and heat transfer conference, 18–20 June, Seattle, WA

    Google Scholar 

  • Erbil HY (2006) Surface chemistry of solid and liquid interfaces. Blackwell Publishing, Oxford

    Google Scholar 

  • Erbil HY (2014) The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: a review. Surf Sci Rep 69:325–365

    Article  CAS  Google Scholar 

  • Erbil HY, Demirel AL, Avci Y, Mert O et al (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Farhadi S, Farzaneh M, Kulinich SA (2011) Anti-icing performance of superhydrophobic surfaces. Appl Surf Sci 257:6264–6269

    Article  CAS  Google Scholar 

  • Farzaneh M, Volat C, Leblond A (2008) Anti-icing and de-icing techniques for overhead lines. Springer, Dordrecht, pp 229–268

    Google Scholar 

  • Fillion RM, Riahi AR, Edrisy A (2014) A review of icing prevention in photovoltaic devices by surface engineering. Renew Sust Energ Rev 32:797–809

    Article  CAS  Google Scholar 

  • Gent RW, Dart NP, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc London, Ser A 358:2873–2911

    Article  Google Scholar 

  • Gerbino-Bevins BM (2011) Performance rating of de-icing chemicals for winter operations. Civil Engineering Theses, Dissertations, and Student Research 20. http://digitalcommons.unl.edu/civilengdiss/20

  • Golovin K, Kobaku SP, Lee DH, DiLoreto ET, Mabry JM, Tuteja A et al (2016) Designing durable icephobic surfaces. Sci Adv 2:e1501496

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo P, Zheng Y, Wen M, Song C, Lin Y, Jiang L et al (2012) Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater 24:2642–2648

    Article  CAS  PubMed  Google Scholar 

  • Hansen DJA (2011) Combating the effects of snow and ice on LED traffic signals: the city of green bay response. IMSA J 49: 38, 42–43, 45

    Google Scholar 

  • He M, Wang J, Li H, Song Y et al (2011) Superhydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7:3993–4000

    Article  CAS  Google Scholar 

  • He Z, Xie WJ, Liu Z, Liu G, Wang Z, Gao YQ, Wang J et al (2016) Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci Adv 2:e1600345

    Article  PubMed  PubMed Central  Google Scholar 

  • Heydari G, Tyrode E, Visnevskij C, Makuska R, Claesson PM et al (2016) Temperature-dependent deicing properties of electrostatically anchored branched brush layers of poly(ethylene oxide). Langmuir 32:4194–4202

    Article  CAS  PubMed  Google Scholar 

  • Howard KW, Haynes J (1993) Groundwater contamination due to road de-icing chemicals-salt balance implications. Geosci Can 20:1–8

    Google Scholar 

  • Huang L, Liu Z, Liu Y, Gou Y, Wang J et al (2009) Experimental study on frost release on fin-and-tube heat exchangers by use of a novel anti-frosting paint. Exp Thermal Fluid Sci 33:1049–1054

    Article  CAS  Google Scholar 

  • Irajizad P, Hasnain M, Farokhnia N, Sajadi SM, Ghasemi H et al (2016) Magnetic slippery extreme icephobic surfaces. Nat Commun 7:13395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irajizad P, Ray S, Farokhnia N, Huasnain M, Baldelli S, Ghasemi H et al (2017) Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces. Adv Mater Interface 34:1700009

    Article  Google Scholar 

  • Jelle BP (2013) The challenge of removing snow downfall on photovoltaic solar cell roofs in order to maximize solar energy efficiency-research opportunities for the future. Energ Buildings 67:334–351

    Article  Google Scholar 

  • Jha KC, Anim-Danso E, Bekele S, Eason G, Tsige M et al (2016) On modulating interfacial structure towards improved anti-icing performances. Coatings 6:3

    Article  CAS  Google Scholar 

  • Jung S, Dorrestijn M, Raps D, Das A, Megaridis CM, Poulikakos D et al (2011) Are superhydrophobic surfaces best for icephobicity? Langmuir 27:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Nakajima A, Irie H et al (2004) Adhesion and sliding of wet snow on a superhydrophobic surface with hydrophilic channels. J Mater Sci 39:547–555

    Article  Google Scholar 

  • Kim P, Wong TS, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J et al (2012) Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6:6569–6577

    Article  CAS  PubMed  Google Scholar 

  • Kim P, Kreder MJ, Alvarenga J, Aizenberg J et al (2013) Hierarchical or not? effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 13:1793–1799

    Article  CAS  PubMed  Google Scholar 

  • Kirillova A, Ionov L, Roisman IV, Synytska A et al (2016) Hybrid hairy Janus particles for anti-icing and de-icing surfaces: synergism of properties and effects. Chem Mater 28:6995–7005

    Article  CAS  Google Scholar 

  • Kloow L (2011) “High-speed train operation in winter climate”, ISBN: 978-91-7501-121-9

    Google Scholar 

  • Kreder MJ, Alvarenga J, Kim P, Aizenberg J et al (2016) Design of anti-icing surfaces: smooth, textured or slippery? Nat Mater Rev 1:1–15

    Article  CAS  Google Scholar 

  • Kulinich SA, Farzaneh M (2009a) Ice adhesion on superhydrophobic surfaces. Appl Surf Sci 255:8153–8157

    Article  CAS  Google Scholar 

  • Kulinich SA, Farzaneh M (2009b) How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25:8854–8856

    Article  CAS  PubMed  Google Scholar 

  • Kulinich SA, Farhadi S, Nose K, Du XW et al (2011) Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27:25–29

    Article  CAS  PubMed  Google Scholar 

  • Laforte JL, Allaire MA, Laflamme J (1998) State-of-the-art on power line de-icing. Atmos Res 46:143–158

    Article  Google Scholar 

  • Li K, Xu S, Shi W, He M, Li H, Li S, Zhou X, Wang J, Song Y et al (2012) Investigating the effects of solid surfaces on ice nucleation. Langmuir 28:10749–10754

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang P, Liu M, Wang S, Jiang L et al (2013) Organogel-based thin films for self-cleaning on various surfaces. Adv Mater 25:4477–4481

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang Y, Huang M, Zhou Y, Liu Y, Liang X et al (2015) Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating. Appl Surf Sci 346:68–76

    Article  CAS  Google Scholar 

  • Liu B, Zhang K, Tao C, Zhao Y, Li X, Zhu K, Yuan X (2016) Strategies for anti-icing: low surface energy or liquid-infused? RSC Adv 6:70251–70260

    Article  CAS  Google Scholar 

  • Liu Z, He Z, Lv J, Jin Y, Wu S, Liu G, Zhoud F, Wang J et al (2017) Ion-specific ice propagation behavior on polyelectrolyte brush surfaces. RSC Adv 7:840–844

    Article  CAS  Google Scholar 

  • Lu J, Jiang Z, Zhang H, Lei H, Li B, Fang Z et al (2009) Analysis of human power grid ice disaster accident in 2008. Autom Electr Power Syst 11:005

    Google Scholar 

  • LV J, Song Y, Jiang L, Wang J (2014) Bio-inspired strategies for anti-icing. ACS Nano 8:3152–3169

    Article  CAS  PubMed  Google Scholar 

  • Makkonen L, Laakso T, Marjaniemi M, Finstad KJ et al (2001) Modeling and prevention of ice accretion on wind turbines. Wind Eng 25:3–21

    Article  Google Scholar 

  • Marwitz J, Politovich M, Bernstein B et al (1997) Meteorological conditions associated with the ATR72 aircraft accident near Roselawn, Indiana, on 31 October 1994. Bull Am Meteorol Soc 78:41–52

    Article  Google Scholar 

  • Masoudi A, Irajizad P, Farokhnia N, Kashyap V, Ghasemi H et al (2017) Anti sliding magnetic slippery surfaces. ACS Appl Mater Interface 9:21025–21033

    Article  CAS  Google Scholar 

  • Matsubayashi T, Tenjimbayashi M, Manabe K et al (2016) Integrated anti-icing property of super-repellency and electrothermogenesis exhibited by PEDOT:PSS/cyanoacrylate composite nanoparticles. ACS Appl Mater Interfaces 8:24212–24220

    Article  CAS  PubMed  Google Scholar 

  • Menini R, Ghalmi Z, Farzaneh M (2011) Highly resistant icephobic coatings on aluminum alloys. Cold Reg Sci Technol 65:65–69

    Article  Google Scholar 

  • Meuler AJ, Smith JD, Varanasi KK, Mabry JM, McKinley GH, Cohen RE et al (2010a) Relationships between water wettability and ice adhesion. ACS Appl Mater Interfaces 2:3100–3110

    Article  CAS  PubMed  Google Scholar 

  • Meuler AJ, McKinley GH, Cohen RE (2010b) Exploiting topographical texture to impart icephobicity. ACS Nano 4:7048–7052

    Article  CAS  PubMed  Google Scholar 

  • Mosher FR, Schaum D, Herbster C, Guinn T et al (2010) Analysis of causes of icing conditions which contributed to the crash of continental flight 3407. Presented at 14th conference on aviation, range, and aerospace meteorology, Atlanta, GA, 17–21 January, 2010

    Google Scholar 

  • Nath S, Ahmadi SF, Boreyko JB (2017) A review of condensation frosting. Nanoscale Microscale Thermophys Eng 21:81–101

    Article  Google Scholar 

  • Nosonovsky M, Hejazi V (2012) Why superhydrophobic surfaces are not always icephobic. ACS Nano 6:8488–8491

    Article  CAS  PubMed  Google Scholar 

  • Oberli L, Caruso D, Hall C, Fabretto M, Murphy PJ, Evans D et al (2014) Condensation and freezing of droplets on superhydrophobic surfaces. Adv Colloid Interf Sci 210:47–57

    Article  CAS  Google Scholar 

  • Ozbay S, Erbil HY (2015) Superhydrophobic and oleophobic surfaces obtained by graft copolymerization of perfluoroalkyl ethyl acrylate onto SBR rubber. Colloids Surf A Physicochem Eng Asp 481:537–546

    Article  CAS  Google Scholar 

  • Ozbay S, Yuceel C, Erbil HY (2015) Improved icephobic properties on surfaces with a hydrophilic lubricating liquid. ACS Appl Mater Interfaces 7:22067–22077

    Article  CAS  PubMed  Google Scholar 

  • Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg Sci Technol 65:88–96

    Article  Google Scholar 

  • Ruan M, Li W, Wang B, Deng B, Ma F, Yu Z et al (2013) Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates. Langmuir 29:8482–8491

    Article  CAS  PubMed  Google Scholar 

  • Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK et al (2013) Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29:5230–5238

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Takai K, Yamauchi G (1997) Water and ice-repellent coatings. Surf Coat Int 80:168–171

    Article  CAS  Google Scholar 

  • Sanzo D, Hecnar SJ (2006) Effects of road de-icing salt (NaCl) on larval wood frogs rana sylvatica. Environ Pollut 140:247–256

    Article  CAS  PubMed  Google Scholar 

  • Schutzius TM, Jung S, Maitra T, Eberle P, Antonini C, Stamatopoulos C, Poulikakos D et al (2015) Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31:4807–4821

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK et al (2013) Droplet mobility on lubricant- impregnated surfaces. Soft Matter 9:1772–1780

    Article  CAS  Google Scholar 

  • Sojoudi H, Wang M, Boscher ND, McKinley GH, Gleason KK et al (2016) Durable and scalable icephobic surfaces: similarities and distinction from superhydrophobic surfaces. Soft Matter 12:1938–1963

    Article  CAS  PubMed  Google Scholar 

  • Stone HA (2012) Ice-phobic surfaces that are wet. ACS Nano 6:6536–6540

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam SB, Rykaczewski K, Varanasi KK (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29:13414–13418

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Damel VG, Liu S, Rykaczewski K et al (2015) Bioinspired stimuli-responsive and antifreeze-secreting anti-icing coatings. Adv Mater Interfaces 2:1400479

    Article  CAS  Google Scholar 

  • Thomas SK, Cassoni RP, MacArthur CD (1996) Aircraft anti-icing and de-icing techniques and modeling. J Aircr 33:841–854

    Article  Google Scholar 

  • Urata C, Dunderdale GJ, England MW, Hozumi A et al (2015) Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. J Mater Chem A 3:12626–12630

    Article  CAS  Google Scholar 

  • Varanasi KK, Deng T, Smith JD, Hsu M, Bhate N et al (2010) Frost formation and ice adhesion on superhydrophobic surfaces. Appl Phys Lett 97:23410

    Article  CAS  Google Scholar 

  • Vogel N, Belisle RA, Hatton B, Wong TS, Aizenberg J et al (2013) Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat Commun 4:2176–2185

    Article  CAS  Google Scholar 

  • Wang F, Li C, Lv Y, Lv F, Du Y et al (2010) Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions. Cold Reg Sci Technol 62:29–33

    Article  Google Scholar 

  • Wang H, He G, Tian Q (2012a) Effects of nano-fluorocarbon coating on icing. Appl Surf Sci 258:7219–7224

    Article  CAS  Google Scholar 

  • Wang D, Tao T, Xu G, Luo A, Kang S et al (2012b) Experimental study on frosting suppression for a finned-tube evaporator using ultrasonic vibration. Exp Thermal Fluid Sci 36:1–11

    Google Scholar 

  • Wang C, Zhang W, Siva A, Tiea D, Wynne KJ et al (2014a) Laboratory test for ice adhesion strength using commercial instrument. Langmuir 30:540–547

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Fuller T, Zhang W, Wynne KJ et al (2014b) Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposites: Sylgard 184. Langmuir 30:12819–12826

    Article  CAS  PubMed  Google Scholar 

  • Williams DD, Williams NE, Cao Y (2000) Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact. Water Res 34:127–138

    Article  CAS  Google Scholar 

  • Wilson PW, Lu W, Xu H, Kim P, Kreder MJ, Alvarenga J, Aizenberg J et al (2013) Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys Chem Chem Phys 15:581–585

    Article  CAS  PubMed  Google Scholar 

  • Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Xia Q, Zhu L, Xue J, Wang Q, Chen Q et al (2011) Research on the icephobic properties of fluoropolymer-based materials. Appl Surf Sci 257:4956–4962

    Article  CAS  Google Scholar 

  • Yin L, Xia Q, Xue J, Yang S, Wang Q, Chen Q et al (2010) In situ investigation of ice formation on surfaces with representative wettability. Appl Surf Sci 256:6764–6769

    Article  CAS  Google Scholar 

  • Yin X, Zhang Y, Wang D, Liu Z, Liu Y, Pei X, Yu B, Zhou F et al (2015) Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance. Adv Funct Mater 25:4237–4245

    Article  CAS  Google Scholar 

  • Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q et al (2013) Icephobic coatings based on silicon-oil-infused polydimethylsiloxane. ACS Appl Mater Interfaces 5:4053–4062

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Beckford S, Wei R, Ellis C, Hatton G, Miller MA et al (2011) Effects of surface roughness and energy on ice adhesion strength. Appl Surf Sci 257:3786–3792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks A. Hozumi for beneficial discussion for this chapter. The author thanks C. Ottawa for her helpful comments on manuscript and Enago (www.enago.jp) for the English language review. The author thanks T.-E. Fang for kindly providing a picture after the freezing rain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Urata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urata, C. (2018). Toward Enviromentally Adaptive Anti-icing Coating. In: Hozumi, A., Jiang, L., Lee, H., Shimomura, M. (eds) Stimuli-Responsive Dewetting/Wetting Smart Surfaces and Interfaces. Biologically-Inspired Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-92654-4_11

Download citation

Publish with us

Policies and ethics