Skip to main content

Brief History of Life

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 1804 Accesses

Abstract

The evolutionary history of organisms is summarized in this chapter, starting from the origin of life. Evolution of the genetic code is discussed with reference to tRNAs, and estimation of the phylogenetic relationship of metabolic pathways before the diversification of prokaryotes and eukaryotes is given. The history of eukaryotes follows with special reference to multicellular lineages, finally reaching us human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinshaw, G., et al. (2009). Maps, and basic results. Astrophysical Journal Supplement Series, 180, 225.

    Article  Google Scholar 

  2. Anders, E., & Ebihara, M. (1982). Solar-system abundances of the elements. Geochimica et Cosmochimica Acta, 46, 2363–2380.

    Article  Google Scholar 

  3. Tilton, G. G. (1988). Age of the solar system. Meteorites and the early solar system (pp. 259–275). Tucson: University of Arizona Press.

    Google Scholar 

  4. Sleep, N. H., Zahnle, K. J., Kasting, J. F., & Morowitz, H. J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.

    Article  Google Scholar 

  5. Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. PNAS, 112, 14518–14521.

    Article  Google Scholar 

  6. Crick, F. R. C., & Orgel, L. E. (2011). Directed panspermia. Icarus, 19, 341–346.

    Article  Google Scholar 

  7. Super-complex organic molecules found in interstellar space. Royal Astronomical Society News Archive. (http://www.ras.org.uk/news-and-press/157-news2010/1853-complex-space-molecules).

  8. Gilbert, W. (1986). The RNA world. Nature, 316, 618.

    Article  Google Scholar 

  9. Weiner, A. M., & Maizels, N. (1999). The genomic tag hypothesis: Modern viruses as molecular fossils of ancient strategies for genomic replication, and clues regarding the origin of protein synthesis. The Biological Bulletin, 196, 327–330.

    Article  Google Scholar 

  10. Saitou, N. (2013). Introduction to evoutionary genomics (fisrt ed.). London: Springer.

    Book  Google Scholar 

  11. Nagel, G. M., & Doolittle, R. F. (1995). Phylogenetic analysis of the aminoacyl-tRNA synthetases. Journal of Molecular Evolution, 40, 487–498.

    Article  Google Scholar 

  12. Woose, C. R., Olsen, G. J., Ibba, M., & Soll, D. (2000). Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiology and Molecular Biology Reviews, 64, 202–236.

    Article  Google Scholar 

  13. Hartman, H., & Smith, T. F. (2014). The Evolution of the ribosome and the genetic code. Life, 4, 227–249.

    Article  Google Scholar 

  14. Tomiki, T., & Saitou, N. (2004). Phylogenetic analysis of proteins associated in four major energy metabolism systems: Photosynthesis, oxidative phosphorylation, nitrogen metabolism and sulfur metabolism. Journal of Molecular Evolution, 59, 158–176. zseri.

    Article  Google Scholar 

  15. OOta, S., & Saitou, N. (1999). Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees. Molecular Biology and Evolution, 16, 856–867.

    Article  Google Scholar 

  16. Bekker, A., Holland, H. D., Wang, P. L., Rumble, D., III, Stein, H. J., Hannah, J. L., et al. (2004). Dating the rise of atmospheric oxygen. Nature, 427, 117–120.

    Article  Google Scholar 

  17. Takemura, M. (2017). Viruses evolved organisms (in Japanese). Tokyo: Kodansha Blue Backs Series.

    Google Scholar 

  18. He, D., Fiz-Palacios, O., Fu, C.-J., Fehling, J., Tsai, C.-C., & Baldauf, S. L. (2014). An alternative root for the eukaryote tree of life. Current Biology, 24, 465–470.

    Article  Google Scholar 

  19. Yokono, M., Satoh, S., & Tanaka, A. (2018). Comparative analyses of whole- genome protein sequences from multiple organisms. Scientific Reports, 8, 6800.

    Article  Google Scholar 

  20. Finnet, C., Timme, R. E., Delwiche, C. F., & Marletaz, F. (2010). Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 20, 2217–2222.

    Article  Google Scholar 

  21. Grigoriev, I. V., et al. (2014). MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Research, 42, D699–D704.

    Article  Google Scholar 

  22. Ruiz-Trillo, I., Roger, A. I., Burger, G., Gray, M. W., & Lang, B. F. (2008). A phylogenomic investigation into the origin of Metazoa. Molecular Biology and Evolution, 25, 664–672.

    Article  Google Scholar 

  23. Telford, M. J., Budd, G. E., & Philippe, H. (2015). Phylogenomic insights into animal evolution. Current Biology, 25, R876–R887.

    Article  Google Scholar 

  24. Dehal, P., et al. (2002). The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science, 298, 2157–2167.

    Article  Google Scholar 

  25. Putnam, N. H., et al. (2008). The amphioxus genome and the evolution of the chordate karyotype. Nature, 453, 1064–1071.

    Article  Google Scholar 

  26. Hedges, S. B. (2009). Chapter 39: Vertebrates (Vertebrata). In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 309–314). Oxford: Oxford University Press.

    Google Scholar 

  27. Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z., & Klein, J. (2003). Molecular phylogeny of early vertebrates: Monophyly of the Agnathans as revealed by sequences of 35 genes. Molecular Biology and Evolution, 20, 287–292.

    Article  Google Scholar 

  28. PALEOMAP project (http://www.scotese.com/earth.htm).

  29. Tarver, J. E., et al. (2016). The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biology and Evolution, 8, 330–344.

    Article  Google Scholar 

  30. Murphy, W. J., & Eizirik, E. (2009). Chapter 71: Placental mammals (Eutheria). In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 471–474). Oxford: Oxford University Press.

    Google Scholar 

  31. Shulte, P., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous- Paleogene boundary. Science, 327, 1214–1218.

    Article  Google Scholar 

  32. Steiper, M. E., & Young, N. M. (2009). Chapter 74: Primates. In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 482–486). Oxford: Oxford University Press.

    Google Scholar 

  33. Hara, Y., Imanishi, T., & Satta, Y. (2012). Reconstructing the demographic history of the human lineage using whole-genome sequences from human and three great apes. Genome Biology and Evolution, 4, 1133–1145.

    Article  Google Scholar 

  34. Takahata, N., & Satta, Y. (1997). Evolution of the primate lineage leading to modern humans: Phylogenetic and demographic inferences from DNA sequences. Proceedings of the National Academy of Sciences USA, 94, 4811–4815.

    Article  Google Scholar 

  35. Saitou, N. (2017). Human evolution and human genome at a glance. In N. Saitou (Ed.), Evolution of the Human Genome Genes and Genomes (Vol. I, pp. 3–18)., Evolutionary Study Series Tokyo: Springer.

    Google Scholar 

  36. Gribbin, J., & Charfas, J. (1982). The monkey puzzle. New York: Pantheon Books.

    Google Scholar 

  37. Goodman, M. (1962). Evolution of the immunologic species specificity of human serum proteins. Human Biology, 34, 104–150.

    Google Scholar 

  38. Saitou, N. (2005). Evolution of hominoids and the search for a genetic basis for creating humanness. Cytogenetic and Genome Research, 108, 16–21.

    Article  Google Scholar 

  39. Satta, Y., Klein, J., & Takahata, N. (2000). DNA archives and our nearest relative: The trichotomy problem revisited. Molecular Phylogenetics and Evolution, 14, 259–275.

    Article  Google Scholar 

  40. Chen, F. C., & Li, W.-H. (2001). Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. American Journal of Human Genetics, 68, 444–456.

    Article  Google Scholar 

  41. O’huigin, C., Satta, Y., Takahata, N., & Klein, J. (2002). Contribution of homoplasy and of ancestral polymorphism to the evolution of genes in anthropoid primates. Molecular Biology and Evolution, 19, 1501–1513.

    Article  Google Scholar 

  42. Kitano, T., Liu, Y.-H., Ueda, S., & Saitou, N. (2004). Human specific amino acid changes found in 103 protein coding genes. Molecular Biology and Evolution, 21, 936–944.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruya Saitou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saitou, N. (2018). Brief History of Life. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-92642-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92642-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92641-4

  • Online ISBN: 978-3-319-92642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics