Skip to main content

Proteins

  • Chapter
  • First Online:
Book cover Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 1804 Accesses

Abstract

Characteristics of amino acids, building blocks of proteins, are first discussed, followed by discussions on protein structures and diversity of proteins. Gene family, super gene family, domains, and folds are discussed, and then, major categories of proteins are explained. Finally, history of protein study is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devlin, T. M. (Ed.). (1992). Textbook of biochemistry with clinical correlations (3rd ed.). New York: Wiley-Liss.

    Google Scholar 

  2. Patenaude, S. I., et al. (2002). The structural basis for specificity in human ABO(H) blood group biosynthesis. Nature Structural Biology, 9, 685–690.

    Article  Google Scholar 

  3. Dayhoff, M. O., et al. (1965). Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation.

    Google Scholar 

  4. Henikoff, S., & Henikoff, J. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89, 10915–10919.

    Article  Google Scholar 

  5. Koonin, E. V., Wolf, Y. I., & Karev, G. P. (2002). The structure of the protein universe and genome evolution. Nature, 420, 218–223.

    Article  Google Scholar 

  6. Hillier, L., Miller, W., Birney, E., Warren, W., Hardison, R. C., Ponting, C. P., et al. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432, 695–716.

    Google Scholar 

  7. Dorit, R. L., Schoenbach, L., & Gilbert, W. (1990). How big is the universe of exons? Science, 250, 1377–1382.

    Article  Google Scholar 

  8. Li, W. H., Gu, Z., Wang, H., & Nekrutenko, A. (2001). Evolutionary analyses of the human genome. Nature, 409, 847–849.

    Article  Google Scholar 

  9. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  10. Ikeo, K., Takahashi, K., & Gojobori, T. (1992). Evolutionary origin of a Kunitz-type trypsin inhibitor domain inserted in the amyloid beta precursor protein of Alzheimer’s disease. Journal of Molecular Evolution, 34, 536–543.

    Article  Google Scholar 

  11. Long, M., Rosenberg, C., & Gilbert, W. (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proceedings of the National Academy of Sciences of the United States of America, 92, 12495–12499.

    Article  Google Scholar 

  12. de Souza, S. J., Long, M., Schoenbach, L., Roy, S. W., & Gilbert, W. (1996). Intron positions correlate with module boundaries in ancient proteins. Proceedings of the National Academy of Sciences USA, 93, 14632–14636.

    Article  Google Scholar 

  13. Vibranovski, M. D., Sakabe, N. J., de Oliveira, R. S., & de Souza, S. J. (2005). Signs of ancient and modern exon-shuffling are correlated to the distribution of ancient and modern domains along proteins. Journal of Molecular Evolution, 61, 341–350.

    Article  Google Scholar 

  14. Patthy, L. (2003). Modular assembly of genes and the evolution of new functions. Genetica, 118, 217–231.

    Article  Google Scholar 

  15. Kawashima, T., Kawashima, S., Tanaka, C., Murai, M., Yoneda, M., Putnam, N. H., et al. (2009). Domain shuffling and the evolution of vertebrates. Genome Research, 19, 1393–1403.

    Article  Google Scholar 

  16. Masuyama, W. (2009). Evolutionary analysis of protein domains in mammals. Ph.D. dissertation, Department of Genetics, School of Life Science, Graduate University for Advanced Studies.

    Google Scholar 

  17. Nakamura, A., Hattori, M., & Sakaki, Y. (1997). A novel gene isolated from human placenta located in Down syndrome critical region on chromosome 21. DNA Research, 4, 321–324.

    Article  Google Scholar 

  18. Saber, M. M., Babarinde, I. A., Hettiarachchi, N., & Saitou, N. (2016). Emergence and evolution of Hominidae-specific coding and noncoding genomic sequences. Genome Biology and Evolution, 8, 2076–2092.

    Article  Google Scholar 

  19. Chou, P. Y., & Fasman, G. D. (1974). Prediction of protein conformation. Biochemistry, 13, 222–245.

    Article  Google Scholar 

  20. http://www.sbcs.qmul.ac.uk/iubmb/enzyme/.

  21. Hendriks, W., Mulders, J. W., Bibby, M. A., Slingsby, C., Bloemendal, H., de Jong, W. W., et al. (1988). Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical: A single-copy gene product with two distinct functions. Proceedings of the National Academy of Sciences USA, 85, 7114–7118.

    Article  Google Scholar 

  22. Mohri, H. (1968). Amino-acid composition of tubulin constituting microtubules of sperm flagella. Nature, 217, 1053–1054.

    Article  Google Scholar 

  23. https://www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer/learning-center/structural-proteins.html.

  24. Keller, B. (1993). Structural cell wall proteins. Plant Physiology, 101, 1127–1130.

    Article  Google Scholar 

  25. Szewczyk, B., Bieńkowska-Szewczyk, K., & Król, E. (2014). Introduction to molecular biology of influenza a viruses. Acta Biochimica Polonica, 61, 397–401.

    Google Scholar 

  26. https://www.uniprot.org/help/transmem.

  27. https://www.proteinatlas.org/humanproteome/secretome.

  28. Simoni, R. D., & Vaughan, M. (2002). The discovery of the amino acid threonine: The work of William C. Rose. Journal of Biological Chemisty, 277, e25.

    Google Scholar 

  29. Sanger, F. (1988). Sequences, sequences, and sequences. Annual Review of Biochemistry, 57, 1–28.

    Article  Google Scholar 

  30. Smithies, O. (1955). Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. Biochemical Journal, 61, 629–641.

    Article  Google Scholar 

  31. Kendrew, J. C., et al. (1958). A three-dimensional model of myoglobin molecule obtained by X-ray analysis. Nature, 181, 662–666.

    Article  Google Scholar 

  32. Berman, H. M., et al. (2002). The Protein Data Bank at 40: Reflecting on the past to prepare for the future. Structure, 20, 391–396.

    Article  Google Scholar 

  33. Saitou, N. (2007). Introduction to evolutionary genomics (in Japanese). Tokyo: Kyoritsu Shuppan.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruya Saitou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saitou, N. (2018). Proteins. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-92642-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92642-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92641-4

  • Online ISBN: 978-3-319-92642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics