Skip to main content

Human Population Genomics

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 1870 Accesses

Abstract

Population genetics is a part of evolutionary studies. Now with human genome sequences, population genomics emerged, starting from the analysis of multiple human mitochondrial DNA genome sequences. It was extended to nuclear DNA of human individuals, and genome-wide SNP data comparison is now flourishing, rapidly followed by comparisons of personal genomes. As the genome sequencing cost is becoming drastically reduced, population genomics will definitely expand to many other organisms. We discuss both methods and examples of population genomics in this chapter focusing human genomes. However, contents of this chapter can be applicable to population genomics of any diploid organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  2. Nei, M., & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA, 76, 5269–5273.

    Article  MATH  Google Scholar 

  3. Nei, M. (1972). Genetic distances between populations. American Naturalist, 106, 283–292.

    Article  Google Scholar 

  4. Tajima, A., Cheih-Shan Sun, C.-S., Pan, I.-H., Ishida, T., Saitou, N., & Horai, S. (2003). Mitochondrial DNA polymorphisms in nine aboriginal groups of Taiwan: Implications for the population history of aboriginal Taiwanese. Human Genetics, 113, 24–33.

    Google Scholar 

  5. Takahata, N., Satta, Y., & Klein, J. (1995). Divergence time and population size in the lineage leading to modern humans. Theoretical Population Biology, 48, 198–221.

    Article  MATH  Google Scholar 

  6. Takahata, N. (1993). Allelic genealogy and human evolution. Molecular Biology and Evolution, 10, 2–22.

    Google Scholar 

  7. White, T., et al. (2009). Ardipithecus ramidus special issue. Science, 326(5949).

    Google Scholar 

  8. Hara, Y., Imanishi, T., & Satta, Y. (2012). Reconstructing the demographic history of the human lineage using whole-genome sequences from human and three great apes. Genome Biology and Evolution, 4, 1133–1145.

    Article  Google Scholar 

  9. Saitou, N. (1995). A genetic affinity analysis of human populations. Human Evolution, 10, 17–33.

    Article  Google Scholar 

  10. Nei, M., & Roychoudhury, A. (1974). Genetic variation within and between the three major races of man, caucasoids, negroids, and mongoloids. American Journal of Human Genetics, 26, 421–443.

    Google Scholar 

  11. Glonau, I., Hubisz, M. J., Gulko, B., Danko, C. G., & Siepel, A. (2011). Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics, 43, 1031–1035.

    Article  Google Scholar 

  12. Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19, 153–170.

    Article  Google Scholar 

  13. Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. American Journal of Human Genetics, 19, 233–257.

    Google Scholar 

  14. Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., & Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Sciences of the United States of America, 92, 532–536.

    Article  Google Scholar 

  15. Jinam, T. A., Hong, L.-C., Phipps, M. A., Stoneking, M., Ameen, M., Edo, J., Pan-Asian SNP Consortium, & Saitou, N. (2012). Evolutionary history of continental South East Asians: “Early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution, 9, 2013–2022.

    Google Scholar 

  16. Ingman, M., Kaessman, H., Paabo, S., & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708–713.

    Article  Google Scholar 

  17. Tanaka, M., et al. (2005). Mitochondrial genome variation in Eastern Asia and the peopling of Japan. Genome Research, 14, 1832–1850.

    Article  MathSciNet  Google Scholar 

  18. Behar, D. M., et al. (2012). A “Copernican” reassessment of the human mitochondrial DNA tree from its root. American Journal of Human Genetics, 90, 675–684.

    Article  Google Scholar 

  19. PhyloTree Home Page. http://www.phylotree.org.

  20. de Rienzo, A., & Wilson, A. C. (1991). Branching pattern in the evolutionary tree for human mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 88, 1597–1601.

    Article  Google Scholar 

  21. Harpending, H. C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591–600.

    Google Scholar 

  22. Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular and Biological Evolution, 22, 1185–1192.

    Article  Google Scholar 

  23. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

    Google Scholar 

  24. Kawai, Y., & Saitou, N. (2011). Analysis of nucleotide substitution patterns through mitochondrial DNA SNP (in Japanese). DNA Takei, 19, 28–31.

    Google Scholar 

  25. Kawai, Y., Kikuchi, T., & Saitou, N. (unpublished). Evolutionary dynamics of nucleotide composition of primate mitochondrial DNA inferred from human SNP data and nuclear pseudogenes.

    Google Scholar 

  26. International HapMap Consortium. (2005). The haplotype map of the human genome. Nature, 437, 1299–1318.

    Article  Google Scholar 

  27. Pemberton, T. J., Wang, C., Li, J. Z., & Rosenberg, N. A. (2010). Inference of unexpected genetic relatedness among individuals in HapMap phase III. American Journal of Human Genetics, 87, 457–464.

    Article  Google Scholar 

  28. Jinam, A. T., et al. (2017). Discerning the origins of the Negritos, First Sundaland People: Deep divergence and archaic admixture. Genome Biology and Evolution, 9, 2013–2022.

    Article  Google Scholar 

  29. Browning, S. R., & Browning, B. L. (2010). High-resolution detection of identity by descent in unrelated individuals. American Journal of Human Genetics, 86, 526–539.

    Article  Google Scholar 

  30. Browning, B. L., & Browning, S. R. (2011). A fast, powerful method for detecting identity by descent. American Journal of Human Genetics, 88, 173–182.

    Article  Google Scholar 

  31. Browning, B. L., & Browning, S. R. (2013). Detecting identity by descent and estimating genotype error rates. American Journal of Human Genetics, 93, 840–851.

    Article  Google Scholar 

  32. Morrison, D. F. (1978). Multivariate statistical methods. Auckland: McGraw-Hill.

    Google Scholar 

  33. Novembre, J., et al. (2008). Genes mirror geography within Europe. Nature, 456, 98–101.

    Article  Google Scholar 

  34. Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigen analysis. PLoS Genetics, 2, e190.

    Article  Google Scholar 

  35. Wright, S. (1943). Isolation by distance. Genetics, 28, 114–138.

    Google Scholar 

  36. Novembre, J., & Stephens, M. (2008). Interpreting principal component analyses of spatial population genetic variation. Nature Genetics, 40, 646–649.

    Article  Google Scholar 

  37. Kanzawa-Kiriyama, H., et al. (2017). A partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan. Journal of Human Genetics, 62, 213–221.

    Article  Google Scholar 

  38. Pagani, L., et al. (2016). Genomic analyses inform on migration events during the peopling of Eurasia. Nature, 538, 238–242.

    Article  Google Scholar 

  39. The HUGO Pan-Asian SNP Consortium. (2009). Mapping human genetic diversity in Asia. Science, 326, 1541–1545.

    Article  Google Scholar 

  40. Bryc, K., et al. (2010). Genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proceedings of the National Academy of Sciences of the United States of America, 107, 8954–8961.

    Article  Google Scholar 

  41. McEvoy, B. P., et al. (2010). Whole-genome genetic diversity in a sample of Australians with deep aboriginal ancestry. American Journal of Human Genetics, 87, 297–305.

    Article  Google Scholar 

  42. Jinam, T. A., Phipps, M. A., & Saitou, N. (2012). Admixture patterns and genetic differentiation in Negrito groups from West Malaysia estimated from genome-wide SNP data. Human Biology, 85(1), Article 8.

    Article  Google Scholar 

  43. Purcell, S., et al. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559–575.

    Article  Google Scholar 

  44. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    Google Scholar 

  45. Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664.

    Article  Google Scholar 

  46. Mondal, M., et al. (2016). Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nature Genetics, 48, 1066–1072.

    Article  Google Scholar 

  47. Japanese Archipelago Human Population Genetics Consortium. (2012). The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. Journal of Human Genetics, 57, 787–795.

    Google Scholar 

  48. Felsenstein, J. (1973). Maximum likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492.

    Google Scholar 

  49. PHYLIP home page. http://evolution.genetics.washington.edu/phylip/.

  50. Omoto, K., & Saitou, N. (1997). Genetic origins of the Japanese: A partial support for the ‘dual structure hypothesis’. American Journal of Physical Anthropology, 102, 437–446.

    Article  Google Scholar 

  51. Hanihara, K. (1991). Dual structure model for the population history of the Japanese. Japan Review, 2, 1–33.

    Google Scholar 

  52. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    Google Scholar 

  53. McEvoy, B. P., Powell, J. E., Goddard, M. E., & Visscher, P. M. (2011). Human population dispersal ‘Out of Africa’ estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Research, 21, 821–829.

    Article  Google Scholar 

  54. Bryant, D., & Moulton, V. (2004). Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265.

    Article  Google Scholar 

  55. Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.

    Article  Google Scholar 

  56. Malaspinas, A. S., et al. (2016). A genomic history of Aboriginal Australia. Nature, 538, 207–214.

    Article  Google Scholar 

  57. Da, D., Sanchez-Mazas, A., & Currat, M. (2015). Computer simulation of human leukocyte antigen genes supports two main routes of colonization by human populations in East Asia. BMC Evolutionary Biology, 15, 240.

    Article  Google Scholar 

  58. Saitou, N. (2017). Origin of Japanese inferred from nuclear DNA analyses (in Japanese). Tokyo: Kawade Shobo Shin-sha.

    Google Scholar 

  59. Wall, J. (2017). Inferring human demographic histories of Non-African populations from patterns of allele sharing. American Journal of Human Genetics, 100, 766–772.

    Article  Google Scholar 

  60. Ferris, S. D., et al. (1983). Flow of mitochondrial DNA across a species boundary. Proceedings of the National Academy of Sciences USA, 80, 2290–2294.

    Article  Google Scholar 

  61. Wade, C. M., et al. (2002). The mosaic structure of variation in the laboratory mouse genome. Nature, 420, 574–578.

    Article  Google Scholar 

  62. Wiltshire, T., et al. (2003). Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proceedings of the National Academy of Sciences USA, 100, 3380–3385.

    Article  Google Scholar 

  63. Abe, K., et al. (2004). Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6 J, as defined by BAC end sequence-SNP analysis. Genome Research, 14, 2239–2247.

    Article  Google Scholar 

  64. Liu, Y.-H., Takahashi, A., Kitano, T., Koide, T., Shiroishi, T., Moriwaki, K., et al. (2008). Mosaic genealogy of the Mus musculus genome revealed by 21 nuclear genes from its three subspecies. Genes and Genetic Systems, 83, 77–88.

    Article  Google Scholar 

  65. Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S., & Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441, 1103–1108.

    Article  Google Scholar 

  66. Innan, H., & Watanabe, H. (2006). The effect of gene flow on the coalescent time in the human- chimpanzee ancestral population. Molecular and Biological Evolution, 23, 1040–1047.

    Article  Google Scholar 

  67. Yamamichi, M., Gojobori, J., & Innan, H. (2012). An autosomal analysis gives no genetic evidence for complex speciation of humans and chimpanzees. Molecular and Biological Evolution, 29, 145–156.

    Article  Google Scholar 

  68. Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8, e1002967.

    Article  Google Scholar 

  69. Reich, D., et al. (2011). Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 89, 516–528.

    Article  Google Scholar 

  70. Meyer, M., et al. (2012). A high-coverage genome sequence from an archaic Denisovan individual. Science, 338, 222–226.

    Article  Google Scholar 

  71. Patterson, N., et al. (2012). Ancient admixture in human history. Genetics, 192, 1065–1093.

    Article  Google Scholar 

  72. Gao, X., & Martin, E. R. (2009). Using allele sharing distance for detecting human population stratification. Human Heredity, 68, 182–191.

    Article  Google Scholar 

  73. Green, R. E., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–722.

    Article  Google Scholar 

  74. Rasmussen, M., et al. (2011). An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334, 94–98.

    Article  Google Scholar 

  75. Pru ̈ fer, K., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49.

    Article  Google Scholar 

  76. Skoglund, P., et al. (2016). Genomic insights into the peopling of the Southwest Pacific. Nature, 538, 510–513.

    Article  Google Scholar 

  77. Theunert, C., Tang, K., Lackmann, M., Hu, S., & Stoneking, M. (2012). Inferring the history of population size change from genome-wide SNP data. Molecular Biology and Evolution, 29, 3653–3667.

    Article  Google Scholar 

  78. Keinan, A., & Clark, A. G. (2012). Recent explosive human population growth has resulted in an excess of rare genetic variants. Science, 336, 740–743.

    Article  Google Scholar 

  79. Li, H., & Durbin, R. (2011). Inference of human population history from individual whole- genome sequences. Nature, 475, 493–498.

    Article  Google Scholar 

  80. PSMS download site. https://github.com/lh3/psmc.

  81. Osada, N., Hettiarachchi, N., Babarinde, I. A., Saitou, N., & Blancher, A. (2015). Whole-genome sequencing of six Mauritian cynomolgus macaques (Macaca fascicularis) reveals a genome-wide pattern of polymorphisms under extreme population bottleneck. Genome Biology and Evolution, 7, 821–830.

    Article  Google Scholar 

  82. Schiffels, S., & Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nature Genetics, 46, 919–925.

    Article  Google Scholar 

  83. Gutenkunst, R. N., et al. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics, 5, e1000695.

    Article  Google Scholar 

  84. Liu, X., & Fu, Y.-X. (2015). Exploring population size changes using SNP frequency spectra. Nature Genetics, 47, 555–561.

    Article  Google Scholar 

  85. 1000 Genomes Project Consortium. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65.

    Google Scholar 

  86. Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., et al. (2002). Functional SNPs in the lymphotoxin-gene that are associated with susceptibility to myocardial infarction. Nature Genetics, 32, 650–654.

    Article  Google Scholar 

  87. Yoshiura, K., et al. (2006). A SNP in the ABCC11 gene is the determinant of human earwax type. Nature Genetics, 38, 324–330.

    Article  Google Scholar 

  88. Matsunaga, E. (1962). The dimorphism in human normal cerumen. Annals of Human Genetics, 25, 273–286.

    Article  Google Scholar 

  89. Gudbjartsson, D. F., et al. (2008). Many sequence variants affecting diversity of adult human height. Nature Genetics, 40, 609–615.

    Article  Google Scholar 

  90. Joshi, P. K., et al. (2015). Directional dominance on stature and cognition in diverse human populations. Nature, 523, 459–462.

    Article  Google Scholar 

  91. Liu, F., et al. (2012). A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Biology, 8, e1002932.

    Google Scholar 

  92. Adhikari, K., et al. (2016). A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nature Communictions, 7, 10815.

    Google Scholar 

  93. Stokowski, R. P., et al. (2007). A genomewide association study of skin pig- mentation in a South Asian population. American Journal of Human Genetics, 81, 1119–1132.

    Article  Google Scholar 

  94. Kimura, R. (2017). Global landscapes of human phenotypic variation in inherited traits. In N. Saitou (Ed.), Evolution of the Human Genome I (pp. 217–239). Springer, Tokyo: Evolutionary Studies.

    Chapter  Google Scholar 

  95. Claes, P., et al. (2018). Genome-wide mapping of global-to-local genetic effects on human facial shape. Nature Genetics, 50, 414–423.

    Article  Google Scholar 

  96. Fisher, R. A. (1918). The correlation between relatives on the superposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 42, 321–341.

    Article  Google Scholar 

  97. Darwin, C. (1859). On the origin of species. London: John Murray.

    Google Scholar 

  98. Watterson, A. (1978). The homozygosity test of neutrality. Genetics, 88, 405–417.

    Google Scholar 

  99. Fay, J. C., & Wu, C.-I. (2000). Hitchhiking under positive Darwinian selection. Genetics, 155, 1405–1413.

    Google Scholar 

  100. Fu, Y. X. (1996). New statistical tests of neutrality for DNA samples from a population. Genetics, 143, 557–570.

    Google Scholar 

  101. Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    Google Scholar 

  102. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA popymorphism. Genetics, 123, 585–595.

    Google Scholar 

  103. Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133, 693–709.

    Google Scholar 

  104. Hudson, R., Kreitman, M., & Aguade, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics, 116, 153–159.

    Google Scholar 

  105. McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652–654.

    Article  Google Scholar 

  106. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford: Oxford University Press.

    Google Scholar 

  107. Endo, T., Ikeo, K., & Gojobori, T. (1996). Large-scale search for genes on which positive selection may operate. Molecular Biology and Evolution, 13, 685–690.

    Article  Google Scholar 

  108. PAML website. http://abacus.gene.ucl.ac.uk/software/paml.html.

  109. Suzuki, Y., & Nei, M. (2002). Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites. Molecular Biology and Evolution, 19, 1865–1869.

    Article  Google Scholar 

  110. Nozawa, M., Suzuki, Y., & Nei, M. (2009). Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proceedings of the National Academy of Sciences USA, 106, 6700–6705.

    Article  Google Scholar 

  111. Comeron, J. M. (2017). Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies. Philosophical transactions of the Royal Society B, 372, 20160471.

    Article  Google Scholar 

  112. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.

    Article  Google Scholar 

  113. Saitou, N. (2016). Declaration of history-centricism (in Japanese). Tokyo: Wedge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruya Saitou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saitou, N. (2018). Human Population Genomics. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-92642-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92642-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92641-4

  • Online ISBN: 978-3-319-92642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics