Skip to main content

Omic Worlds and Their Databases

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 1808 Accesses

Chapter Summary

When whole genome sequences of various organisms were started to be determined, the trend to grasp everything became one mainstream of modern biology, and omic studies are now flourishing on genomes, transcriptomes, proteomes, metabolomes, and phenomes. Because of their massive amount of information, we need their databases for omics studies. We thus discuss various omic worlds and their corresponding databases in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCBI (National Center for Biotechnology Information) Genome Biology. (https://www.ncbi.nlm.nih.gov/genome.

  2. Ensembl Genomes. (http://ensemblgenomes.org).

  3. Ensembl. (http://www.ensembl.org).

  4. UCSC (University of California, Santa Cruz) Genome Bioinformatics. (http://genome.ucsc.edu).

  5. GenomeSync. (http://genomesync.org).

  6. JGI (Joint Genome Institute; http://www.jgi.doe.gov/).

  7. MycoCosm. (https://genome.jgi.doe.gov/programs/fungi/index.jsf).

  8. Phytozome. (https://phytozome.jgi.doe.gov/pz/portal.html).

  9. GOLD (Genomes OnLine Database). (https://gold.jgi.doe.gov/index).

  10. MBGD (Microbial Genome Database). (http://mbgd.nibb.ac.jp).

  11. PlantGDB. (http://www.plantgdb.org).

  12. PGDB (Plant Genome Database Japan). (http://pgdbj.jp).

  13. FungiDB. (http://fungidb.org/fungidb/).

  14. EuPathDB. (https://eupathdb.org/eupathdb/).

  15. KEGG Genome Database. (http://www.genome.jp/kegg/genome.html).

  16. China National Gene Bank. https://www.cngb.org/database.html).

  17. Velculescu, V. E., et al. (1997). Characterization of the yeast transcriptome. Cell, 88, 243–251.

    Article  Google Scholar 

  18. The FANTOM Consortium. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559–1563.

    Article  Google Scholar 

  19. Djebali, S., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.

    Article  Google Scholar 

  20. Graveley, B. R., et al. (2011). The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479.

    Article  Google Scholar 

  21. Endo, A., et al. (2012). Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds. Plant and Cell Physiology, 53, 16–27.

    Article  Google Scholar 

  22. Diez-Roux, G., et al. (2011). A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biology, 9, e1000582.

    Article  Google Scholar 

  23. Eurexpress atlas. (http://www.eurexpress.org).

  24. Athanasiadis, A., Rich, A., & Maas, S. (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biology, 2, e391.

    Article  Google Scholar 

  25. Kim, D. D. Y., et al. (2004). Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Research, 14, 1719–1725.

    Article  Google Scholar 

  26. The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.

    Article  Google Scholar 

  27. Thurman, R. E., et al. (2012). The accessible chromatin landscape of the human genome. Nature, 489, 75–82.

    Article  Google Scholar 

  28. Neph, S., et al. (2012). An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83–90.

    Article  Google Scholar 

  29. Gestein, M. B. (2012). Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100.

    Article  Google Scholar 

  30. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250, 4007–4021.

    Google Scholar 

  31. Tsugita, A., et al. (2000). Proteome analysis of mouse brain: Two-dimensional electrophoresis profiles of tissue proteins during the course of aging. Electrophoresis, 21, 1853–1871.

    Article  Google Scholar 

  32. Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 193–207.

    Article  Google Scholar 

  33. Xie, L., et al. (2005). Genomic and proteomic analysis of mammary tumors arising in transgenic mice. Journal of Proteome Research, 4, 2088–2098.

    Article  Google Scholar 

  34. Gavin, A.-C., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147.

    Article  Google Scholar 

  35. Taniguchi, Y., et al. (2010). Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538.

    Article  Google Scholar 

  36. Newman, J. R. S., et al. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature, 441, 840–846.

    Article  Google Scholar 

  37. UNIPROT. (http://www.uniprot.org).

  38. Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.

    Article  Google Scholar 

  39. Protein Data Bank (PDB). (https://www.rcsb.org).

  40. Tornroth-Horsefield, S., et al. (2006). Structural mechanism of plant aquaporin gating. Nature, 439, 688–694.

    Article  Google Scholar 

  41. PFAM. (http://pfam.xfam.org).

  42. InterPro. (https://www.ebi.ac.uk/interpro/).

  43. Sumiyama, K., Washio-Watanabe, K., Saitou, N., Hayakawa, T., & Ueda, S. (1996). Class III POU genes: Generation of homopolymeric amino acid repeats under GC pressure in mammals. Journal of Molecular Evolution, 43, 170–178.

    Article  Google Scholar 

  44. PRIDE Archive. (https://www.ebi.ac.uk/pride/archive/).

  45. Peptide Atlas. (http://www.peptideatlas.org).

  46. Tweeddale, H., Notley-McRobb, L., & Ferenci, T. (1998). Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. Journal of Bacteriology, 180, 5109–5114.

    Google Scholar 

  47. Fu, X., et al. (2011). Rapid metabolic evolution in human prefrontal cortex. Proceedings of the National Academy of Sciences USA, 108, 6181–6186.

    Article  Google Scholar 

  48. Freimer, N., & Sabatti, C. (2003). The human phenome project. Nature Genetics, 34, 15–21.

    Article  Google Scholar 

  49. Saitou, N., Kimura, R., Fukase, H., Yogi, A., Murayama, S., & Ishida, H. (2011). Advanced CT images reveal nonmetric cranial variations in living humans. Anthropological Science, 119, 231–237.

    Article  Google Scholar 

  50. Saitou, N. (2013). Introduction to evolutionary genomics. Heidelberg: Springer.

    Book  Google Scholar 

  51. Venter, C. G., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.

    Article  Google Scholar 

  52. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. (http://www.genome.jp/kegg/pathway.html).

  53. Gene Ontology Consortium. (http://www.geneontology.org).

  54. Takahashi, M., & Saitou, N. (2012). Identification and characterization of lineage-specific highly conserved noncoding sequences in mammalian genomes. Genome Biology and Evolution, 4, 641–657.

    Article  Google Scholar 

  55. Matsunami, M., & Saitou, N. (2013). Vertebrate paralogous conserved noncoding sequences may be related to gene expressions in brain. Genome Biology and Evolution, 5, 140–150.

    Article  Google Scholar 

  56. Babarinde, I., & Saitou, N. (2013). Heterogeneous tempo and mode of conserved noncoding sequence evolution among four mammalian orders. Genome Biology and Evolution, 5, 2330–2343.

    Article  Google Scholar 

  57. Hettiarachchi, N., Kryukov, K., Sumiyama, K., & Saitou, N. (2014). Lineage-specific conserved noncoding sequences of plant genomes: Their possible role in nucleosome positioning. Genome Biology and Evolution, 6, 2527–2542.

    Article  Google Scholar 

  58. Hettiarachchi, N., & Saitou, N. (2016). GC content heterogeneity transition of conserved noncoding sequences occurred at the emergence of vertebrates. Genome Biology and Evolution, 8, 3377–3392.

    Article  Google Scholar 

  59. Saber, M. M., Babarinde, I. A., Hettiarachchi, N., & Saitou, N. (2016). Emergence and evolution of Hominidae-specific coding and noncoding genomic sequences. Genome Biology and Evolution, 8, 2076–2092.

    Article  Google Scholar 

  60. Saber, M. M., & Saitou, N. (2017). Silencing effect of hominoid highly conserved non-coding sequences on embryonic brain development. Genome Biology and Evolution, 9, 2037–2048.

    Article  Google Scholar 

  61. UK BioBank. (http://www.ukbiobank.ac.uk/).

  62. Matrix of Comparative Anthropogeny (MOCA). (https://carta.anthropogeny.org/moca/).

  63. GenBank. (https://www.ncbi.nlm.nih.gov/genbank/).

  64. European Nucleotide Archive (ENA). (https://www.ebi.ac.uk/ena).

  65. DNA Data Bank of Japan (DDBJ). (https://www.ddbj.nig.ac.jp/).

  66. International Nucleotide Sequence Database Collaboration. (http://www.insdc.org).

  67. Kitano, T., Sumiyama, K., Shiroishi, T., & Saitou, N. (1998). Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochemical and Biophysical Research Communications, 249, 78–85.

    Article  Google Scholar 

  68. PubMed. (https://www.ncbi.nlm.nih.gov/pubmed/).

  69. Google Scholar. (https://scholar.google.com).

  70. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic Press.

    Chapter  Google Scholar 

  71. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    Google Scholar 

  72. Online Mendelian Inheritance in Man (OMIM). (https://www.omim.org).

  73. Online Mendelian Inheritance in Animals (OMIA). (http://omia.org/home/).

  74. MITOMAP. (https://www.mitomap.org/MITOMAP).

  75. dbSNP. (https://www.ncbi.nlm.nih.gov/snp).

  76. Darwin, C. (1859). On the origin of species. London: John Murray.

    Google Scholar 

  77. Tree of Life. (http://tolweb.org/tree/).

  78. Maddison, D. R., Schulz, K.-S., & Maddison, W. P. (2007). The tree of life web project. Zootaxa, 1668, 19–40.

    Google Scholar 

  79. NCBI Taxonomy. (https://www.ncbi.nlm.nih.gov/taxonomy).

  80. Time Tree. (http://www.timetree.org).

  81. Dayhoff, M. O, Eck, R. V, Chang, M. A., & Sochard, M. R. (1965). Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation.

    Google Scholar 

  82. McKusick, V. A. (1966). Mendelian inheritance in man: Catalogs of autosomal dominant, autosomal recessives, and X-linked phenotypes. London: William Heinemann Medical Books.

    Google Scholar 

  83. History of EMBL-EBI. (https://www.ebi.ac.uk/history).

  84. https://www.nih.gov/news-events/news-releases/genbank-celebrates-25-years-service-two-day-conference-leading-scientists-will-discuss-dna-database-april-7-8-meeting.

  85. Tateno, Y., & Gojobori, T. (1997). DNA Data Bank of Japan in the age of information biology. Nucleic Acid Research, 25, 14–17.

    Article  Google Scholar 

  86. Fumoto, M., Miyazaki, S., & Sugawara, H. (2002). Genome Information Broker (GIB): Data retrieval and comparative analysis system for completed microbial genomes and more. Nucleic Acid Research, 30, 66–68.

    Article  Google Scholar 

  87. Fukuchi, S., Homma, K., Sakamoto, S., Sugawara, H., Tateno, Y., Gojobori, T., et al. (2009). The GTOP database in 2009: Updated content and novel features to expand and deepen insights into protein structures and functions. Nucleic Acid Research, 37, D333–D337.

    Article  Google Scholar 

  88. Misu, S., Iizuka, T., Kawanishi, Y., Fukami, K., & Saitou, N. (2001). CAMUS DB for amino acid sequence data. Genome Informatics, 2001, 502–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruya Saitou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saitou, N. (2018). Omic Worlds and Their Databases. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-92642-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92642-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92641-4

  • Online ISBN: 978-3-319-92642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics