Skip to main content

Chord Progressions Selection Based on Song Audio Features

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

  • 2444 Accesses

Abstract

A chord progression is an essential building block in music. In the field of music theory is usually assumed that these progressions influence the mood, emotion, genre or other critical aspects of the songs, and also in the perception that they will cause on the listener. Therefore, it is natural to think that musical and audio features of a track should be related to its chord progressions. Choosing carefully these progressions when it comes the time of creating a new song, is a fundamental aspect depending on the feelings we want to evoke on the listener. Also, two songs can be considered alike or classified into the same emotions or genres if they use the same chord progressions. Many music classification studies are presented nowadays, but none of them take into account chord progressions, probably due to the lack of this kind of data. In this paper, classification algorithms are used to illustrate the influence of the songs’ features when it comes to pick up chord progressions to create a new song.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juslin, P.N., Sloboda, J.: Handbook of Music and Emotion: Theory, Research, Applications. Oxford University Press, Oxford (2011)

    Google Scholar 

  2. Cho, Y.H., Lim, H., Kim, D.W., Lee, I.K.: Music emotion recognition using chord progressions. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002588–002593. IEEE (2016)

    Google Scholar 

  3. Stamatatos, E., Widmer, G.: Automatic identification of music performers with learning ensembles. Artif. Intell. 165(1), 37–56 (2005)

    Article  MathSciNet  Google Scholar 

  4. Arutyunov, V., Averkin, A.: Genetic algorithms for music variation on genom platform. Procedia Comput. Sci. 120, 317–324 (2017). 9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception, ICSCCW 2017, Budapest, Hungary, 22–23 August 2017

    Article  Google Scholar 

  5. Costa, Y.M., Oliveira, L.S., Silla, C.N.: An evaluation of convolutional neural networks for music classification using spectrograms. Appl. Soft Comput. 52, 28–38 (2017)

    Article  Google Scholar 

  6. Hu, X., Downie, J.S.: Improving mood classification in music digital libraries by combining lyrics and audio. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries, JCDL 2010, pp. 159–168. ACM, New York (2010)

    Google Scholar 

  7. Gómez, L.M., Cáceres, M.N.: Applying data mining for sentiment analysis in music. In: De la Prieta, F., Vale, Z., Antunes, L., Pinto, T., Campbell, A.T., Julián, V., Neves, A.J.R., Moreno, M.N. (eds.) PAAMS 2017. AISC, vol. 619, pp. 198–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61578-3_20

    Chapter  Google Scholar 

  8. Famous-Chord-Progressions, January 2018. https://www.hooktheory.com/theorytab/common-chord-progressions

  9. Spotify, January 2018. https://developer.spotify.com/web-api/get-audio-features/

  10. HookTheory-API, January 2018. https://www.hooktheory.com/api/trends/docs

  11. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)

    Article  Google Scholar 

  12. Villar, J.R., Chira, C., Sedano, J., González, S., Trejo, J.M.: A hybrid intelligent recognition system for the early detection of strokes. Integr. Comput. Aided Eng. 22(3), 215–227 (2015)

    Article  Google Scholar 

  13. Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds.): SOCO 2015. AISC, vol. 368. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-19719-7

    Book  Google Scholar 

  14. Troiano, L., Rodríguez-Muñiz, L.J., Ranilla, J., Díaz, I.: Interpretability of fuzzy association rules as means of discovering threats to privacy. Int. J. Comput. Math. 89(3), 325–333 (2012)

    Article  Google Scholar 

  15. Gil-Pita, R., Ayllón, D., Ranilla, J., Llerena-Aguilar, C., Díaz, I.: A computationally efficient sound environment classifier for hearing aids. IEEE Trans. Biomed. Eng. 62(10), 2358–2368 (2015)

    Article  Google Scholar 

  16. Montañés, E., Quevedo, J.R., Díaz, I., Ranilla, J.: Collaborative tag recommendation system based on logistic regression. In: Proceedings of ECML PKDD (The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases) Discovery Challenge 2009, Bled, Slovenia, 7 September 2009 (2009)

    Google Scholar 

  17. Chambers, J.M.: Statistical Models in S. CRC Press, Inc., Boca Raton (1991)

    Google Scholar 

  18. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  19. Wright, M.N., Ziegler, A.: ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77(1), 1–17 (2017)

    Article  Google Scholar 

  20. Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46. IBM, New York (2001)

    Google Scholar 

  21. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  22. Masnadi-shirazi, H., Vasconcelos, N.: On the design of loss functions for classification: theory, robustness to outliers, and savageboost. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 1049–1056. Curran Associates, Inc. (2009)

    Google Scholar 

Download references

Acknowledgments

This research has been funded by the Spanish MINECO project TIN2017-87600-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rico, N., Díaz, I. (2018). Chord Progressions Selection Based on Song Audio Features. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics