Skip to main content

Evaluation of a Wrist-Based Wearable Fall Detection Method

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Abstract

Fall detection represents an important issue when dealing with Ambient Assisted Living for the elder. The vast majority of fall detection approaches have been developed for healthy and relatively young people. Moreover, plenty of these approaches make use of sensors placed on the hip. Considering the focused population of elderly people, there are clear differences and constraints. On the one hand, the patterns and times in the normal activities -and also the falls- are different from younger people: elders move slowly. On the second hand, solutions using uncomfortable sensory systems would be rejected by many candidates. In this research, one of the proposed solutions in the literature has been adapted to use a smartwatch on a wrist, solving some problems and modifying part of the algorithm. The experimentation includes a publicly available dataset. Results point to several enhancements in order to be adapted to the focused population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P.: AlessioVecchio: a smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883–899 (2012)

    Article  Google Scholar 

  2. Bagala, F., Becker, C., Cappello, A., Chiari, L., Aminian, K., Hausdorff, J.M., Zijlstra, W., Klenk, J.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS One 7(5), e37062 (2012)

    Article  Google Scholar 

  3. Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 619–627 (2010)

    Article  Google Scholar 

  4. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: UMAFALL: a multisensor dataset for the research on automatic fall detection. Procedia Computer Science 110(Supplement C), 32–39 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917312899. In: 14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2017)/12th International Conference on Future Networks and Communications (FNC 2017)/Affiliated Workshops

    Article  Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  6. Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall prevention using wearable and external sensors. Sensors 14(10), 19806–19842 (2014). http://www.mdpi.com/1424-8220/14/10/19806/htm

    Article  Google Scholar 

  7. Gil-Pita, R., Ayllón, D., Ranilla, J., Llerena-Aguilar, C., Díaz, I.: A computationally efficient sound environment classifier for hearing aids. IEEE Trans. Biomed. Eng. 62(10), 2358–2368 (2015). https://doi.org/10.1109/TBME.2015.2427452

    Article  Google Scholar 

  8. González, S., Sedano, J., Villar, J.R., Corchado, E., Herrero, Á., Baruque, B.: Features and models for human activity recognition. Neurocomputing 167, 52–60 (2015)

    Article  Google Scholar 

  9. González, S., Villar, J.R., Sedano, J., Terán, J., Alonso-Álvarez, M.L., González, J.: Heuristics for apnea episodes recognition. In: Proceedings of the International Conference on Soft Computing Models in Industrial and Environmental Applications. Springer, Cham (2015) (accepted)

    Google Scholar 

  10. Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for fall detection: analysis and design. Procedia Comput. Sci. 105, 46–51 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917302065

    Article  Google Scholar 

  11. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12, 66 (2013). http://www.biomedical-engineering-online.com/content/12/1/66

    Article  Google Scholar 

  12. Igual, R., Medrano, C., Plaza, I.: A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 37(9), 870–878 (2015). http://www.sciencedirect.com/science/article/pii/S1350453315001575

    Article  Google Scholar 

  13. Khan, S.S., Hoey, J.: Review of fall detection techniques: a data availability perspective. Med. Eng. Phys. 39, 12–22 (2017). http://www.sciencedirect.com/science/article/pii/S1350453316302600

    Article  Google Scholar 

  14. Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectron. 90(15), 298–307 (2017)

    Article  Google Scholar 

  15. Montañés, E., Quevedo, J.R., Díaz, I., Ranilla, J.: Collaborative tag recommendation system based on logistic regression. In: Proceedings of ECML PKDD (The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases) Discovery Challenge 2009, Bled, Slovenia, 7 September 2009. http://ceur-ws.org/Vol-497/paper_20.pdf

  16. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008). http://www.R-project.org, ISBN 3-900051-07-0

  17. Sanchez-Lasheras, F., de Andres, J., Lorca, P., et al.: A hybrid device for the solution of sampling bias problems in the forecasting of firms’ bankruptcy. Expert Syst. Appl. 39, 7512–7523 (2012)

    Article  Google Scholar 

  18. Sorvala, A., Alasaarela, E., Sorvoja, H., Myllyla, R.: A two-threshold fall detection algorithm for reducing false alarms. In: Proceedings of 2012 6th International Symposium on Medical Information and Communication Technology (ISMICT) (2012)

    Google Scholar 

  19. Turrado, C.C., López, M.D.C.M., Lasheras, F.S., Gómez, B.A.R., Rollé, J.L.C., Juez, F.J.D.C.: Missing data imputation of solar radiation data under different atmospheric conditions. Sensors 14, 20382–20399 (2014)

    Article  Google Scholar 

  20. Vergara, P.M., de la Cal, E., Villar, J.R., González, V.M., Sedano, J.: An IoT platform for epilepsy monitoring and supervising. J. Sens. 2017, 18 (2017)

    Article  Google Scholar 

  21. Villar, J.R., González, S., Sedano, J., Chira, C., Trejo, J.M.: Human activity recognition and feature selection for stroke early diagnosis. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 659–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5_66

    Chapter  Google Scholar 

  22. Villar, J.R., Vergara, P., Menéndez, M., de la Cal, E., González, V.M., Sedano, J.: Generalized models for the classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition. Int. J. Neural Syst. 26(6), 1650037 (2016)

    Article  Google Scholar 

  23. Villar, J.R., González, S., Sedano, J., Chira, C., Trejo-Gabriel-Galán, J.M.: Improving human activity recognition and its application in early stroke diagnosis. Int. J. Neural Syst. 25(4), 1450036–1450055 (2015)

    Article  Google Scholar 

  24. Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemed. Appl. 2015, 11 (2015). https://www.hindawi.com/journals/ijta/2015/576364/

    Google Scholar 

  25. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017, 31 (2017)

    Google Scholar 

  26. Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class SVM algorithm. In: Huang, D.S., Li, K., Irwin, G.W. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition. LNCIS, vol. 345, pp. 858–863. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-37258-5_104

    Chapter  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Spanish Ministry of Science and Innovation, under project MINECO-TIN2014-56967-R and MINECO-TIN2017-84804-R, and FC-15-GRUPIN14-073 (Regional Ministry of Principality of Asturias).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barri Khojasteh, S., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., Yazg̈an, H.R. (2018). Evaluation of a Wrist-Based Wearable Fall Detection Method. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics