Skip to main content

Distinctive Features of Asymmetric Neural Networks with Gabor Filters

  • Conference paper
  • First Online:
Book cover Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

Abstract

To make clear the mechanism of the visual motion detection is important in the visual system, which is useful to robotic systems. The prominent features are the nonlinear characteristics as the squaring and rectification functions, which are observed in the retinal and visual cortex networks. Conventional models for motion processing, are to use symmetric quadrature functions with Gabor filters. This paper proposes a new motion processing model of the asymmetric networks. To analyze the behavior of the asymmetric nonlinear network, white noise analysis and Wiener kernels are applied. It is shown that the biological asymmetric network with nonlinearities is effective for generating the directional movement from the network computations. Further, responses to complex stimulus and the frequency characteristics are computed in the asymmetric networks, which are not derived for the conventional energy model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichard, W.: Autocorrelation, A principle for the evaluation of sensory information by the central nervous system. Rosenblith Edition. Wiley, New York (1961)

    Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284–298 (1985)

    Article  Google Scholar 

  3. Heess, N., Bair, W.: Direction Opponency, Not Quadrature, Is Key to the 1/4 Cycle Preference for Apparent Motion in the Motion Energy Model. J. Neurosci. 30(34), 11300–11304 (2010)

    Article  Google Scholar 

  4. Chubb, C., Sperling, G.: Drift-balanced random stimuli, a general basis for studying non-Fourier motion. J. Opt. Soc. Am. A 5(11), 1986–2006 (1988)

    Article  MathSciNet  Google Scholar 

  5. Taub, E., Victor, J.D., Conte, M.: Nonlinear preprocessing in short-range motion. Vision. Res. 37, 1459–1477 (1997)

    Article  Google Scholar 

  6. Simonceli, E.P., Heeger, D.J.: A Model of Neuronal Responses in Visual Area MT. Vision. Res. 38, 743–761 (1996)

    Article  Google Scholar 

  7. Heeger, D.J.: Models of Motion Perception, University of Pennsylvania, Department of Computer and Information Science, Technical Report No.MS-CIS-87-91, Sept1987

    Google Scholar 

  8. Heeger, D.J.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992)

    Article  Google Scholar 

  9. Marmarelis, P.Z., Marmarelis, V.Z.: Analysis of Physiological Systems – The White Noise Approach. Plenum Press, New York (1978)

    Book  Google Scholar 

  10. Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems. Wiley, New Jersey (2004)

    Book  Google Scholar 

  11. Marmarelis, V.Z.: Modeling Methodology for Nonlinear Physiological Systems. Ann. Biomed. Eng. 25, 239–251 (1997)

    Article  Google Scholar 

  12. Wiener, N.: Nonlinear Problems in Random Theory. The MIT press, Cambridge (1966)

    Google Scholar 

  13. Sakuranaga, M., Naka, K.-I.: Signal Transmission in the Catfish Retina. III. Transmission to Type-C Cell. J. Neurophysiol. 53(2), 411–428 (1985)

    Article  Google Scholar 

  14. Naka, K.-I., Sakai, H.M., Ishii, N.: Generation of transformation of second order nonlinearity in catfish retina. Ann. Biomed. Eng. 16, 53–64 (1988)

    Article  Google Scholar 

  15. Lee, Y.W., Schetzen, M.: Measurements of the Wiener kernels of a nonlinear by cross-correlation. Int. J. of Control 2, 237–254 (1965)

    Article  Google Scholar 

  16. Ishii, N., Deguchi, T., Kawaguchi, M.: Neural computations by asymmetric networks with nonlinearities. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 37–45. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71629-7_5

    Chapter  Google Scholar 

  17. Ishii, N., Deguchi, T., Kawaguchi, M., Sasaki, H.: Application of asymmetric networks to movement detection and generating independent subspaces. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 267–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishii, N., Deguchi, T., Kawaguchi, M., Sasaki, H. (2018). Distinctive Features of Asymmetric Neural Networks with Gabor Filters. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics