Skip to main content

A Hybrid Genetic-Bootstrapping Approach to Link Resources in the Web of Data

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

Abstract

In the Web of Data, real-world entities are represented by means of resources, for instance the southern Spanish city “Seville” that is represented by means of the resource that is available at http://es.dbpedia.org/page/Sevilla in the DBpedia dataset. Link rules are intended to link resources that are different, but represent the same real-world entities; for instance the resource that is available at https://www.wikidata.org/wiki/Q8717 represents exactly the same real-world entity as the resource aforementioned. A link rule may establish that two resources that represent cities should be linked as long as the GPS coordinates are the same. Such rules are then paramount to integrating web data, because otherwise programs would deal with every resource independently from the other. Knowing that the previous resources represent the same real-world entity allows them to merge the information that they provide independently (which is commonly known as integrating link data). State-of-the-art link rules are learnt by genetic programming systems and build on comparing the values of the attributes of the resources. Unfortunately, this approach falls short in cases in which resources have similar values for their attributes, but represent different real-world entities. In this paper, we present a proposal that hybridises a genetic programming system that learns link rules and an ad-hoc filtering technique that bootstraps them to decide whether the links that they produce must be selected or not. Our analysis of the literature reveals that our approach is novel and our experimental analysis confirms that it helps improve the \(F_1\) score, which is defined in the literature as the harmonic mean of precision and recall, by increasing precision without a significant penalty on recall.

Supported by the Spanish R&D programme (grants TIN2013-40848-R and TIN2013-40848-R). The computing facilities were provided by the Andalusian Scientific Computing Centre (CICA). We are grateful to Dr. Carlos R. Rivero and Dr. David Ruiz for earlier ideas that led to the results in this paper. We also thank Dr. Francisco Herrera for his hints on statistical analyses and sharing his software with us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The datasets are available at https://goo.gl/asvKQV.

  2. 2.

    The prototype is available at https://github.com/AndreaCimminoArriaga/Teide.

References

  1. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data warehouses. In: VLDB, pp. 586–597 (2002)

    Chapter  Google Scholar 

  2. Back, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  3. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. TKDD 1(1), 1–36 (2007)

    Article  Google Scholar 

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data: principles and state of the art. In: WWW (Invited talks) (2008). https://www.w3.org/2008/Talks/WWW2008-W3CTrack-LOD.pdf

  5. Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: efficient matching for large real-world schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)

    Google Scholar 

  6. Dong, X., Halevy, A.Y., Madhavan, J.: Reference reconciliation in complex information spaces. In: SIGMOD, pp. 85–96 (2005)

    Google Scholar 

  7. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In: SIGMOD Conference, pp. 127–138 (1995)

    Article  Google Scholar 

  8. Holub, M., Proksa, O., Bieliková, M.: Detecting identical entities in the semantic web data. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 519–530. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_43

    Chapter  Google Scholar 

  9. Hu, W., Qu, Y.: Falcon-AO: a practical ontology matching system. J. Web Semant. 6(3), 237–239 (2008)

    Article  Google Scholar 

  10. Huber, J., Sztyler, T., Nößner, J., Meilicke, C.: CODI: Combinatorial optimization for data integration. In: OM, pp. 134–141 (2011)

    Google Scholar 

  11. Isele, R., Bizer, C.: Learning expressive linkage rules using genetic programming. PVLDB 5(11), 1638–1649 (2012)

    Google Scholar 

  12. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic programming. J. Web Semant. 23, 2–15 (2013)

    Article  Google Scholar 

  13. Jiménez-Ruiz, E., Grau, B.C.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_18

    Chapter  Google Scholar 

  14. Kalashnikov, D.V., Mehrotra, S., Chen, Z.: Exploiting relationships for domain-independent data cleaning. In: SDM, pp. 262–273 (2005)

    Chapter  Google Scholar 

  15. Köpcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl. Eng. 69(2), 197–210 (2010)

    Article  Google Scholar 

  16. Lacoste-Julien, S., Palla, K., Davies, A., Kasneci, G., Graepel, T., Ghahramani, Z.: SIGMa: simple greedy matching for aligning large knowledge bases. In: KDD, pp. 572–580 (2013)

    Google Scholar 

  17. Monge, A.E., Elkan, C.: The field matching problem: algorithms and applications. In: KDD, pp. 267–270 (1996)

    Google Scholar 

  18. Ngomo, A.C.N., Auer, S.: LIMES: A time-efficient approach for large-scale link discovery on the web of data. In: IJCAI, pp. 2312–2317 (2011)

    Google Scholar 

  19. Ngomo, A.-C.N., Lyko, K.: EAGLE: efficient active learning of link specifications using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_17

    Chapter  Google Scholar 

  20. Nikolov, A., d’Aquin, M., Motta, E.: Unsupervised learning of link discovery configuration. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 119–133. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_15

    Chapter  Google Scholar 

  21. Rastogi, V., Dalvi, N.N., Garofalakis, M.N.: Large-scale collective entity matching. PVLDB 4(4), 208–218 (2011)

    Google Scholar 

  22. Soru, T., Ngomo, A.C.N.: A comparison of supervised learning classifiers for link discovery. In: SEMANTICS, pp. 41–44 (2014)

    Google Scholar 

  23. Szekely, P., et al.: Building and using a knowledge graph to combat human trafficking. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 205–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_12

    Chapter  Google Scholar 

  24. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk: a link discovery framework for the web of data. In: LDOW (2009). http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Cimmino or Rafael Corchuelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cimmino, A., Corchuelo, R. (2018). A Hybrid Genetic-Bootstrapping Approach to Link Resources in the Web of Data. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics