Presentation Attacks in Signature Biometrics: Types and Introduction to Attack Detection

  • Ruben TolosanaEmail author
  • Ruben Vera-Rodriguez
  • Julian Fierrez
  • Javier Ortega-Garcia
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)


Authentication applications based on the use of biometric methods have received a lot of interest during the last years due to the breathtaking results obtained using personal traits such as face or fingerprint. However, it is important not to forget that these biometric systems have to withstand different types of possible attacks. This work carries out an analysis of different Presentation Attack (PA) scenarios for on-line handwritten signature verification. The main contributions of the present work are: (1) short overview of representative methods for Presentation Attack Detection (PAD) in signature biometrics; (2) to describe the different levels of PAs existing in on-line signature verification regarding the amount of information available to the attacker, as well as the training, effort and ability to perform the forgeries; and (3) to report an evaluation of the system performance in signature biometrics under different PAs and writing tools considering freely available signature databases. Results obtained for both BiosecurID and e-BioSign databases show the high impact on the system performance regarding not only the level of information that the attacker has but also the training and effort performing the signature. This work is in line with recent efforts in the Common Criteria standardization community towards security evaluation of biometric systems, where attacks are rated depending on, among other factors, time spent, effort and expertise of the attacker, as well as the information available and used from the target being attacked.



This work has been supported by projects: Bio-Guard (Ayudas Fundación BBVA a Equipos de Investigación Científica 2017), UAM-CecaBank, and by TEC2015-70627-R (MINECO/FEDER). Ruben Tolosana is supported by a FPU Fellowship from the Spanish MECD.


  1. 1.
    Meng W, Wong DS, Furnell S, Zhou J (2015) Surveying the development of biometric user authentication on mobile phones. IEEE Commun Surv Tutor 17:1268–1293CrossRefGoogle Scholar
  2. 2.
    Zhang DD (2013) Automated biometrics: technologies and systems. Springer Science & Business Media, BerlinGoogle Scholar
  3. 3.
    Jain AK, Nandakumar K, Ross A (2016) 50 Years of biometric research: accomplishments, challenges, and opportunities. Pattern Recognit Lett 79:80–105CrossRefGoogle Scholar
  4. 4.
    Taigman Y, Yang M, Ranzato MA, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: The IEEE conference on computer vision and pattern recognition (CVPR)Google Scholar
  5. 5.
    Impedovo D, Pirlo G (2008) Automatic signature verification: the state of the art. IEEE Trans Syst Man Cybern Part C (Appl Rev) 38(5):609–635CrossRefGoogle Scholar
  6. 6.
    Hadid A, Evans N, Marcel S, Fierrez J (2015) Biometrics systems under spoofing attack: an evaluation methodology and lessons learned. IEEE Signal Process Mag 32(5):20–30CrossRefGoogle Scholar
  7. 7.
    Tolosana R, Vera-Rodriguez R, Ortega-Garcia J, Fierrez J (2015) Preprocessing and feature selection for improved sensor interoperability in online biometric signature verification. IEEE Access 3:478–489CrossRefGoogle Scholar
  8. 8.
    Tolosana R, Vera-Rodriguez R, Fierrez J, Morales A, Ortega-Garcia J (2017) Benchmarking desktop and mobile handwriting across COTS devices: the e-Biosign biometric database. PLoS ONE 12(5):e0176792CrossRefGoogle Scholar
  9. 9.
    Galbally J, Gomez-Barrero M, Ross A (2017) Accuracy evaluation of handwritten signature verification: rethinking the random-skilled forgeries dichotomy. In Proceedings of IEEE international joint conference on biometrics, pp 302–310Google Scholar
  10. 10.
    Gomez-Barrero M, Galbally J, Morales A, Fierrez J (2017) Privacy-preserving comparison of variable-length data with application to biometric template protection. IEEE Access 5:8606–8619CrossRefGoogle Scholar
  11. 11.
    Tolosana R, Vera-Rodriguez R, Ortega-Garcia J, Fierrez J (2015) Increasing the robustness of biometric templates for dynamic signature biometric systems. In: Proceedings of 49th annual international Carnahan conference on security technologyGoogle Scholar
  12. 12.
    Nagel RN, Rosenfeld A (1977) Computer detection of freehand forgeries. IEEE Trans Comput C-26:895–905CrossRefGoogle Scholar
  13. 13.
    Eden M (1961) On the formalization of handwriting. Structure of language and its mathematical aspects (Proceedings of symposia in applied mathematics), vol 12. American Mathematical Society, Providence, pp 83–88Google Scholar
  14. 14.
    Guo JK, Doermann D, Rosenfeld A (2001) Forgery detection by local correspondence. Int J Pattern Recognit Artif Intell 15CrossRefGoogle Scholar
  15. 15.
    Madasu VK, Lovell BC (2008) An automatic off-line signature verification and forgery detection system. In: Verma B, Blumenstein M (eds) Pattern recognition technologies and applications: recent advances. IGI Global, USA, pp 63–88Google Scholar
  16. 16.
    Brault JJ, Plamondon R (1993) A complexity measure of handwritten curves: modeling of dynamic signature forgery. IEEE Trans Syst Man Cybern 23:400–413CrossRefGoogle Scholar
  17. 17.
    Gomez-Barrero M, Galbally J, Fierrez J, Ortega-Garcia J, Plamondon R (2015) Enhanced on-line signature verification based on skilled forgery detection using sigma-lognormal features. In: Proceedings of IEEE/IAPR international conference on biometrics. ICB, pp 501–506Google Scholar
  18. 18.
    Sanchez-Reillo R, Quiros-Sandoval HC, Goicochea-Telleria I, Ponce-Hernandez W (2017) Improving presentation attack detection in dynamic handwritten signature biometrics. IEEE Access 5:20463–20469CrossRefGoogle Scholar
  19. 19.
    O’Reilly C, Plamondon R (2009) Development of a sigma-lognormal representation for on-line signatures. Pattern Recognit 42(12):3324–3337CrossRefGoogle Scholar
  20. 20.
    Fierrez J, Morales A, Vera-Rodriguez R, Camacho D (2018) Multiple classifiers in biometrics. part 1: fundamentals and review. Inf Fusion 44:57–64CrossRefGoogle Scholar
  21. 21.
    Doddington G, Liggett W, Martin A, Przybocki M, Reynolds D (1998) Sheeps, goats, lambs and wolves: a statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation. In: Proceedings of international conference on spoken language processingGoogle Scholar
  22. 22.
    Yager N, Dunstone T (2010) The biometric menagerie. IEEE Trans Pattern Anal Mach Intell 32(2):220–230CrossRefGoogle Scholar
  23. 23.
    Houmani N, Garcia-Salicetti S (2016) On hunting animals of the biometric menagerie for online signature. PLoS ONE 11(4):e0151691CrossRefGoogle Scholar
  24. 24.
    Ortega-Garcia J, et al. (2003) MCYT baseline corpus: a bimodal biometric database. IEE Proc Vis Image Signal Process Spec Issue Biom Internet 150(6):395–401CrossRefGoogle Scholar
  25. 25.
    Ballard L, Lopresti D, Monroe F (2007) Forgery quality and its implication for behavioural biometric security. IEEE Trans Syst Man Cybern Part B 37(5):1107–1118CrossRefGoogle Scholar
  26. 26.
    Vielhauer C, Zbisch F (2003) A test tool to support brute-force online and offline signature forgery tests on mobile devices. In: Proceedings of international conference on multimedia and expo, vol 3, pp 225–228Google Scholar
  27. 27.
    Alonso-Fernandez F, Fierrez J, Gilperez A, Galbally J, Ortega-Garcia J (2009) Robustness of signature verification systems to imitators with increasing skills. In: Proceedings of 10th international conference on document analysis and recognition, pp 728–732Google Scholar
  28. 28.
    Ferrer MA, Diaz M, Carmona-Duarte C, Morales A (2017) A behavioral handwriting model for static and dynamic signature synthesis. IEEE Trans Pattern Anal Mach Intell 39(6):1041–1053CrossRefGoogle Scholar
  29. 29.
    Fierrez-Aguilar J, Alonso-Hermira N, Moreno-Marquez G, Ortega-Garcia J (2004) An off-line signature verification system based on fusion of local and global information. In: Proceedings of European conference on computer vision, workshop on biometric authentication, BIOAW, LNCS, vol. 3087. Springer, Berlin, pp 295–306CrossRefGoogle Scholar
  30. 30.
    Tolosana R, Vera-Rodriguez R, Ortega-Garcia J, Fierrez J (2015) Update strategies for HMM-based dynamic signature biometric systems. In: Proceedings of 7th IEEE international workshop on information forensics and security, WIFSGoogle Scholar
  31. 31.
    Fierrez J, Galbally J, Ortega-Garcia J, et al. (2010) BiosecurID: a multimodal biometric database. Pattern Anal Appl 13(2):235–246MathSciNetCrossRefGoogle Scholar
  32. 32.
    Galbally J, Diaz-Cabrera M, Ferrer MA, Gomez-Barrero M, Morales A, Fierrez J (2015) On-line signature recognition through the combination of real dynamic data and synthetically generated static data. Pattern Recognit 48:2921–2934CrossRefGoogle Scholar
  33. 33.
    Martinez-Diaz M, Fierrez J, Hangai S (2015) Signature features. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, Berlin, pp 1375–1382CrossRefGoogle Scholar
  34. 34.
    Martinez-Diaz M, Fierrez J, Hangai S (2015) Signature matching. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, Berlin, pp 1382–1387CrossRefGoogle Scholar
  35. 35.
    Tolosana R, Vera-Rodriguez R, Fierrez J, Ortega-Garcia J (2018) Exploring recurrent neural networks for on-line handwritten signature biometrics. IEEE Access 6:5128–5138CrossRefGoogle Scholar
  36. 36.
    Liu Y, Yang Z, Yang L (2014) Online signature verification based on DCT and sparse representation. IEEE Trans Cybern 45:2498–2511CrossRefGoogle Scholar
  37. 37.
    Diaz M, Fischer A, Ferrer MA, Plamondon R (2016) Dynamic signature verification system based on one real signature. IEEE Trans Cybern 48:228–239CrossRefGoogle Scholar
  38. 38.
    Martinez-Diaz M, Fierrez J, Krish RP, Galbally J (2014) Mobile signature verification: feature robustness and performance comparison. IET Biom 3(4):267–277CrossRefGoogle Scholar
  39. 39.
    Tekampe N, Merle A, Bringer J, Gomez-Barrero M, Fierrez J, Galbally J (2016) Toward Common Criteria evaluations of biometric systems. BEAT public deliverable D6.5.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ruben Tolosana
    • 1
    Email author
  • Ruben Vera-Rodriguez
    • 1
  • Julian Fierrez
    • 2
  • Javier Ortega-Garcia
    • 1
  1. 1.Biometrics and Data Pattern Analytics - BiDA LabEscuela Politecnica Superior, Universidad Autonoma de MadridMadridSpain
  2. 2.Universidad Autonoma de MadridMadridSpain

Personalised recommendations