Skip to main content

Case Studies: Prognostics and Health Management (PHM)

  • Chapter
  • First Online:
Engineering Design under Uncertainty and Health Prognostics

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Prognostics and health management (PHM) technology has been successfully implemented into engineering practice in diverse settings. This chapter presents case studies that explain successful PHM practices in several engineering applications: (1) steam turbine rotors, (2) wind turbine gearboxes, (3) the core and windings in power transformers, (4) power generator stator windings, (5) lithium-ion batteries, (6) fuel cells, and (7) water pipelines. These examples provide useful findings about the four core functions of PHM technology, contemporary technology trends, and industrial values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, K. (1997). Vibration—A tool for machine diagnostics and condition monitoring. Sadhana, 22, 393–410.

    Article  Google Scholar 

  2. Lin, J., & Qu, L. S. (2000). Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 234, 135–148.

    Article  Google Scholar 

  3. Jeon, B., Jung, J., Youn, B., Kim, Y.-W., & Bae, Y.-C. (2015). Datum unit optimization for robustness of a journal bearing diagnosis system. International Journal of Precision Engineering and Manufacturing, 16, 2411–2425.

    Article  Google Scholar 

  4. Bonnardot, F., El Badaoui, M., Randall, R., Daniere, J., & Guillet, F. (2005). Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). Mechanical Systems and Signal Processing, 19, 766–785.

    Article  Google Scholar 

  5. Villa, L. F., Reñones, A., Perán, J. R., & de Miguel, L. J. (2011). Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation. Mechanical Systems and Signal Processing, 25, 2157–2168, 8.

    Article  Google Scholar 

  6. Han, T., Yang, B.-S., Choi, W.-H., & Kim, J.-S. (2006). Fault diagnosis system of induction motors based on neural network and genetic algorithm using stator current signals. International Journal of Rotating Machinery, 2006.

    Google Scholar 

  7. Yang, B.-S., & Kim, K. J. (2006). Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mechanical Systems and Signal Processing, 20, 403–420.

    Article  Google Scholar 

  8. Jung, J.H., Jeon, B.C., Youn, B.D., Kim, M., Kim, D. & Kim, Y., (2017). Omnidirectional regeneration (ODR) of proximity sensor signals for robust diagnosis of journal bearing systems. Mechanical Systems and Signal Processing, 90, 189–207.

    Article  Google Scholar 

  9. Guo, B., Damper, R. I., Gunn, S. R., & Nelson, J. D. B. (2008). A fast separability-based feature-selection method for high-dimensional remotely sensed image classification. Pattern Recognition, 41, 1653–1662, 5.

    Article  Google Scholar 

  10. Abbasion, S., Rafsanjani, A., Farshidianfar, A., & Irani, N. (2007). Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mechanical Systems and Signal Processing, 21, 2933–2945.

    Article  Google Scholar 

  11. Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21, 2560–2574.

    Article  Google Scholar 

  12. Heng, A., Zhang, S., Tan, A. C. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23, 724–739, 4.

    Article  Google Scholar 

  13. Zaher, A., McArthur, S., Infield, D., & Patel, Y. (2009). Online wind turbine fault detection through automated SCADA data analysis. Wind Energy, 12, 574–593.

    Article  Google Scholar 

  14. Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T. A., & Ekemb, G. (2014). Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies, 7, 2595–2630.

    Article  Google Scholar 

  15. Samuel, P. D., Conroy, J. K., & Pines, D. J. (2004). Planetary transmission diagnostics. NASA CR, 213068.

    Google Scholar 

  16. Lebold, M., McClintic, K., Campbell, R., Byington, C., & Maynard, K. (2000). Review of vibration analysis methods for gearbox diagnostics and prognostics. In Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology (p. 16).

    Google Scholar 

  17. Lau, B. C. P., Ma, E. W. M., & Pecht, M. (2012). Review of offshore wind turbine failures and fault prognostic methods. In 2012 IEEE Conference on Prognostics and System Health Management (PHM) (pp. 1–5).

    Google Scholar 

  18. Feldman, K., Jazouli, T., & Sandborn, P. A. (2009). A methodology for determining the return on investment associated with prognostics and health management. IEEE Transactions on Reliability, 58, 305–316.

    Article  Google Scholar 

  19. Nilsson, J., & Bertling, L. (2007). Maintenance management of wind power systems using condition monitoring systems—Life cycle cost analysis for two case studies. IEEE Transactions on Energy Conversion, 22, 223–229.

    Article  Google Scholar 

  20. Hu, C., Wang, P., Youn, B. D., Lee, W.-R., & Yoon, J. T. (2012). Copula-based statistical health grade system against mechanical faults of power transformers. IEEE Transactions on Power Delivery, 27, 1809–1819.

    Article  Google Scholar 

  21. Shengchang, J., Yongfen, L., & Yanming, L. (2006). Research on extraction technique of transformer core fundamental frequency vibration based on OLCM. IEEE Transactions on Power Delivery, 21, 1981–1988.

    Article  Google Scholar 

  22. Wang, P., Youn, B. D., Hu, C., Ha, J. M., & Jeon, B. (2014). A probabilistic detectability-based sensor network design method for system health monitoring and prognostics. Journal of Intelligent Material Systems and Structures, 1045389X14541496.

    Google Scholar 

  23. Hu, C., Youn, B. D., Wang, P., & Yoon, J. T. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering & System Safety, 103, 120–135.

    Article  Google Scholar 

  24. Inoue, Y., Hasegawa, H., Sekito, S., Sotodate, M., Shimada, H., & Okamoto, T. (2003). Technology for detecting wet bars in water-cooled stator windings of turbine generators. In Electric Machines and Drives Conference, 2003. IEMDC’03. IEEE International (pp. 1337–1343).

    Google Scholar 

  25. Kim, H. S., Bae, Y. C., & Kee, C. D. (2008). Wet bar detection by using water absorption detector. Journal of Mechanical Science and Technology, 22, 1163–1173.

    Article  Google Scholar 

  26. Park, K. M., Youn, B. D., Yoon, J. T., Hu, C., Kim, H. S., & Bae, Y. C. (2013). Health diagnostics of water-cooled power generator stator windings using a Directional Mahalanobis Distance (DMD). In 2013 IEEE Conference on Prognostics and Health Management (PHM) (pp. 1–8).

    Google Scholar 

  27. Wang, Y., Miao, Q., & Pecht, M. (2011). Health monitoring of hard disk drive based on Mahalanobis distance. In Prognostics and System Health Management Conference (PHM-Shenzhen), 2011 (pp. 1–8).

    Google Scholar 

  28. Youn, B. D., Park, K. M., Hu, C., Yoon, J. T., Kim, H. S., Jang, B. C., et al. (2015). Statistical health reasoning of water-cooled power generator stator bars against moisture absorption. IEEE Transactions on Energy Conversion, 30(4), 1376–1385.

    Article  Google Scholar 

  29. Arora, P., White, R. E., & Doyle, M. (1998). Capacity fade mechanisms and side reactions in lithium-ion batteries. Journal of the Electrochemical Society, 145, 3647–3667.

    Article  Google Scholar 

  30. Vetter, J., Novák, P., Wagner, M., Veit, C., Möller, K.-C., Besenhard, J., et al. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269–281.

    Article  Google Scholar 

  31. Plett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources, 134, 277–292.

    Article  Google Scholar 

  32. Plett, G. L. (2006). Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation. Journal of Power Sources, 161, 1369–1384.

    Article  Google Scholar 

  33. Hu, C., Jain, G., Tamirisa, P., & Gorka, T. (2014). Method for estimating capacity and predicting remaining useful life of lithium-ion battery. Applied Energy, 126, 182–189.

    Article  Google Scholar 

  34. Lee, S., Kim, J., Lee, J., & Cho, B. (2008). State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. Journal of Power Sources, 185, 1367–1373.

    Article  Google Scholar 

  35. Hu, C., Youn, B. D., & Chung, J. (2012). A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Applied Energy, 92, 694–704.

    Article  Google Scholar 

  36. Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009). Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Applied Energy, 86, 1506–1511.

    Article  Google Scholar 

  37. Chiang, Y.-H., Sean, W.-Y., & Ke, J.-C. (2011). Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles. Journal of Power Sources, 196, 3921–3932.

    Article  Google Scholar 

  38. He, W., Williard, N., Chen, C., & Pecht, M. (2013). State of charge estimation for electric vehicle batteries using unscented Kalman filtering. Microelectronics Reliability, 53, 840–847.

    Article  Google Scholar 

  39. Plett, G. L. (2011). Recursive approximate weighted total least squares estimation of battery cell total capacity. Journal of Power Sources, 196, 2319–2331.

    Article  Google Scholar 

  40. Schmidt, A. P., Bitzer, M., Imre, Á. W., & Guzzella, L. (2010). Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries. Journal of Power Sources, 195, 7634–7638.

    Article  Google Scholar 

  41. Verbrugge, M. (2007). Adaptive, multi-parameter battery state estimator with optimized time-weighting factors. Journal of Applied Electrochemistry, 37, 605–616.

    Article  Google Scholar 

  42. Xiong, R., Sun, F., Chen, Z., & He, H. (2014). A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles. Applied Energy, 113, 463–476.

    Article  Google Scholar 

  43. Waag, W., & Sauer, D. U. (2013). Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination. Applied Energy, 111, 416–427.

    Article  Google Scholar 

  44. Bai, G., Wang, P., Hu, C., & Pecht, M. (2014). A generic model-free approach for lithium-ion battery health management. Applied Energy, 135, 247–260.

    Article  Google Scholar 

  45. Kim, J., Lee, S., & Cho, B. (2012). Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Transactions on Power Electronics, 27, 436–451.

    Article  Google Scholar 

  46. Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., & Vinassa, J.-M. (2012). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42, 487–494.

    Article  Google Scholar 

  47. Pattipati, B., Sankavaram, C., & Pattipati, K. (2011). System identification and estimation framework for pivotal automotive battery management system characteristics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41, 869–884.

    Article  Google Scholar 

  48. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., & Dietmayer, K. (2013). Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680–688.

    Article  Google Scholar 

  49. Widodo, A., Shim, M.-C., Caesarendra, W., & Yang, B.-S. (2011). Intelligent prognostics for battery health monitoring based on sample entropy. Expert Systems with Applications, 38, 11763–11769.

    Article  Google Scholar 

  50. Hu, C., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., & Gorka, T. (2014). Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Applied Energy, 129, 49–55.

    Article  Google Scholar 

  51. Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement, 58, 291–296.

    Article  Google Scholar 

  52. Ng, S. S., Xing, Y., & Tsui, K. L. (2014). A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 118, 114–123.

    Article  Google Scholar 

  53. Wang, D., Miao, Q., & Pecht, M. (2013). Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. Journal of Power Sources, 239, 253–264.

    Article  Google Scholar 

  54. Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010). An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. DTIC Document 2010.

    Google Scholar 

  55. Saha, B., & Goebel, K. (2009). Modeling Li-ion battery capacity depletion in a particle filtering framework. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, 2009 (pp. 2909–2924).

    Google Scholar 

  56. Kim, T., Oh, H., Kim, H., & Youn, B. D. (2016). An online-applicable model for predicting health degradation of PEM fuel cells with root cause analysis. IEEE Transactions on Industrial Electronics, 63(11), 7094–7103.

    Article  Google Scholar 

  57. Demirci, S., Yigit, E., Eskidemir, I. H., & Ozdemir, C. (2012). Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method. NDT and E International, 47, 35–42.

    Article  Google Scholar 

  58. Gao, Y., Brennan, M., Joseph, P., Muggleton, J., & Hunaidi, O. (2004). A model of the correlation function of leak noise in buried plastic pipes. Journal of Sound and Vibration, 277, 133–148.

    Article  Google Scholar 

  59. McNulty, J. (2001). An acoustic-based system for detecting, locating and sizing leaks in water pipelines. In Proceedings of the 4th International Conference on Water Pipeline Systems: Managing Pipeline Assets in an Evolving Market. New York, UK, 2001.

    Google Scholar 

  60. Kim, T., Woo, S., Youn, B. D., & Huh, Y. C. (2015). TDR-based pipe leakage detection and location using Bayesian inference. In 2015 IEEE Conference on Prognostics and Health Management (PHM) (pp. 1–5).

    Google Scholar 

  61. Schuet, S., Timucin, D., & Wheeler, K. (2011). A model-based probabilistic inversion framework for characterizing wire fault detection using TDR. IEEE Transactions on Instrumentation and Measurement, 60, 1654–1663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, C., Youn, B.D., Wang, P. (2019). Case Studies: Prognostics and Health Management (PHM). In: Engineering Design under Uncertainty and Health Prognostics. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-92574-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92574-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92572-1

  • Online ISBN: 978-3-319-92574-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics