Skip to main content

Applications Perspectives of Nanodispersed Chalcogenides of Transition Metals in Photocatalysis

  • Conference paper
  • First Online:
Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Included in the following conference series:

Abstract

An overview of prospective applications of nanodispersed chalcogenides of transition metals such as MoS2 and MoSe2 in photocatalysis is presented. The mechanisms of photocatalytic reactions are analyzed. Classification of photocatalysts is reviewed. Branches of photocatalysts applications are discussed. The structure of chalcogenides of transition metals such as MoS2 and MoSe2 is considered. Photocatalytic, sorption, and electric properties of molybdenum (IV) chalcogenides are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  ADS  Google Scholar 

  2. Fujishima A et al (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1

    Article  Google Scholar 

  3. Jović F et al (2011) Heterogena fotokataliza: osnove i primjena za obradu onečišćenog zraka. Kem Ind 60:387

    Google Scholar 

  4. Bykanova VV et al (2012) Technological aspects of the application of photocatalysts in the industry: an overview. Integr Technol En Eff 4(1):151

    Google Scholar 

  5. Colmenares JC (2004) Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials 2:2228

    Article  ADS  Google Scholar 

  6. Mauroa AD et al (2017) ZnO for application in photocatalysis: from thin films to nanostructures. Mater Sci Semicond Proc 69:44

    Article  Google Scholar 

  7. Mills A et al (2002) A web-based overview of semiconductor photochemstry-based current commercial applications. J Photochem Photobiol 152:233

    Article  Google Scholar 

  8. Dontsova T et al (2012) Synthesis and characterization of titanium (IV) oxide from various precursors. Springer Proc Phys 167:275

    Article  Google Scholar 

  9. Mills A (2012) Photocatalytic oxidation of toluene in an NMR tube. J Photochem Photobiol A 233:34

    Article  Google Scholar 

  10. Cojocaru B et al (2011) Influence of gold particle size on the photocata- lytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering. Appl Catal B 107:140

    Article  Google Scholar 

  11. Ivanenko IN et al (2016) Low-temperature synthesis, structure-sorption characterisics and photocatalytic activity of TiO2 nanostructures. Springer: Phys Chem Water Treat Proc/J Wat Chem Technol 37(1):14

    Google Scholar 

  12. Ballari MM et al (2010) NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B 95:245

    Article  Google Scholar 

  13. Ni M et al (2006) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401

    Article  Google Scholar 

  14. Lu X-H et al (2011) Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity. RSC Adv 1:1207

    Article  Google Scholar 

  15. Morales-Guio C et al (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555

    Article  Google Scholar 

  16. Li X et al (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485

    Article  ADS  Google Scholar 

  17. Deng J et al (2014) High-performance hydrogen evolution electrocatalysis by layer-controlled MoS2 nanosheets. RSC Adv 4:34733

    Article  Google Scholar 

  18. Priscilla BP et al (2015) Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10(2):128

    Article  Google Scholar 

  19. Afanasiev P et al (2008) Synthetic approaches to the molybdenum sulfide materials. Compt Rend Chim 11:159

    Article  Google Scholar 

  20. Brenta JR et al (2017) Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog Mater Sci 89:411

    Article  Google Scholar 

  21. Radisavljevic B et al (2011) Single-layer MoS2 transistors. Nature Nanotech 6:147

    Article  ADS  Google Scholar 

  22. http://www.tribology-abc.com/abc/solidlub.htm

  23. http://www.drilube.co.jp/english/product/molybdenum.html

  24. Petkov V et al (2002) Structure of nanocrystalline materials using atomic pair distribution function analysis: study of LiMoS2. Phys Rev B 65:92

    Article  Google Scholar 

  25. Bell RE et al (1957) Preparation and characterization of a new crystalline form of molybdenum disulfide. J Am Chem S 79:3351

    Article  Google Scholar 

  26. Py M et al (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. C J Phys 61:76

    Article  ADS  Google Scholar 

  27. Suzuki Y et al (1981) Phase relationship on Mo-S system at high temperatures. Mater Res B 16:1085

    Article  Google Scholar 

  28. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193

    Article  ADS  Google Scholar 

  29. Mattheiss LF et al (1973) Energy bands for 2H-NbSe2 and 2H-MoS2. Phys Rev Lett 30:784

    Article  ADS  Google Scholar 

  30. Wypych F (2002) Dissulfeto de molibdênio, um material multifuncional e surpreendente. Quím Nova 25:1

    Article  Google Scholar 

  31. McMenamin JC, Spicer WE (1972) Photoemission studies of the layered dichalcogenides NbSe2 and MoS2 and a modification of the current band models. Phys Rev Let 29:1501

    Article  ADS  Google Scholar 

  32. Spiesser M et al (1969) Caractérisation et étude physico-chimique de séléniures et tellurures non stoechiométriques de molybdène. Bull Soc Chim France 5:1427

    Google Scholar 

  33. Bars O et al (1973) Étude structurale de combinaisons sulfurées et séléniées du molybdène: I. Structure cristalline de Mo3Se4. Chemistry and Structure of Ternary Molybdenum Chalcogenides. J Solid State Chem 6:48

    Article  ADS  Google Scholar 

  34. Towie LC et al (1966) Dichalcogenides MeX2. Science 154:895

    Article  ADS  Google Scholar 

  35. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Amsterdam 1384 р

    Google Scholar 

  36. Brewer L, Lamoreaux RH (1980) Molybdenum: physico-chemical properties of its compounds and alloys. Atom E R 7:195

    Google Scholar 

  37. Parilla P et al (2004) Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed vapor transport. J Phys Chem 108:6197

    Article  Google Scholar 

  38. Hu KH et al (2010) The effect of morphology and size on the photocatalytic properties of MoS2. Reac Kinet Mech Cat 100:153

    Google Scholar 

  39. Shi Y et al (2013) Ordered mesoporous crystalline mose2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv Func Mater 23:1832

    Article  Google Scholar 

  40. Qiao XQ et al (2016) Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv 6:11631

    Article  Google Scholar 

  41. Yan AX et al (2014) Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chem Eur J 20:6927

    Article  Google Scholar 

  42. Chevrel R, Sergent M (1982) Chemistry and structure of ternary molybdenum chalcogenides. In: Fischer O, Maple MB (eds) Superconductivity in ternary compounds i, Topics in current physics Vol. 32. Springer, Berlin

    Google Scholar 

  43. Coehoorn R, Haas C (1987) Electronic structure of MoSe2, MoS2, and WSe2. Band-structure calculations and photoelectron spectroscop. Phys Rev B 35:6195

    Article  ADS  Google Scholar 

  44. Williams AR et al (1979) Cohesive properties of metallic compounds: augmented-spherical-wave calculations. Phys Rev B 19:6094

    Article  ADS  Google Scholar 

  45. Krivosheeva AV (2016) Prospective semiconducting compounds and nanostructures for optoelectronics, photovoltaics and spintronics. Integr technol En Effic 3(97):13

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” for the opportunity to carry out this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanenko, I., Dontsova, T., Fedenko, Y. (2018). Applications Perspectives of Nanodispersed Chalcogenides of Transition Metals in Photocatalysis. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_7

Download citation

Publish with us

Policies and ethics