Skip to main content

The Dynamics of Water Molecules Confined in the Interior of DMPC Phospholipid Reverse Micelle

  • Conference paper
  • First Online:
Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Included in the following conference series:

  • 704 Accesses

Abstract

The behavior of water in nanoscale confinement of phospholipid surfactant is interesting not only for our understanding of processes which take place inside living cells but is also important from the point of view of applications (cosmetic, pharmaceutical, medicine, and food industries). We performed a series of molecular dynamics (MD) simulations of water molecules embedded in the DMPC reverse micelle for temperatures ranging from 280 to 320 K. The following observables were calculated and discussed: mean square displacement, water–water pair distribution function, translational diffusion coefficients, and activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah DO (1998) Micelles, microemulsions, and monolayers. Marcel Dekker, Inc, New York

    Google Scholar 

  2. Fathi H, Kelly JP, Vasquez VR, Graeve OA (2012) Ionic concentration effects on reverse micelle size and stability: implications for the synthesis of nanoparticles. Langmuir 28:9267–9274. https://doi.org/10.1021/la300586f

    Article  Google Scholar 

  3. Kachel A, Gburski Z (1997) Chain formation in a model dipolar liquid: computer simulation study. J Phys Condens Matter 9:10095–10100. https://doi.org/10.1088/0953-8984/9/46/007

    Article  ADS  Google Scholar 

  4. Pal S, Balasubramanian S, Bagchi B (2003) Identity, energy, and environment of interfacial water molecules in a micellar solution. J Phys Chem B 107:5194–5202. https://doi.org/10.1021/jp022349+

    Article  Google Scholar 

  5. Piatek A, Dawid A, Gburski Z (2006) The existence of a plastic phase and a solid-liquid dynamical bistability region in small fullerene cluster (C-60)(7): molecular dynamics simulation. J Phys Cond-Matter 18:8471–8480. https://doi.org/10.1088/0953-8984/18/37/006

    Article  ADS  Google Scholar 

  6. Raczynski P, Gorny K, Pabiszczak M, Gburski Z (2013) Nanoindentation of biomembrane by carbon nanotubes – MD simulation. Comp Mat Science 70:13–18. https://doi.org/10.1016/j.commatsci.2012.12.031

    Article  Google Scholar 

  7. Senapati S, Berkowitz ML (2004) Computer simulation studies of water states in perfluoro polyether reverse micelles: effects of changing the counterion. J Phys Chem A 108:9768–9776. https://doi.org/10.1021/jp048954p

    Article  Google Scholar 

  8. Gburski Z, Gorny K, Raczynski P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. https://doi.org/10.1016/j.ssc.2009.12.005

    Article  ADS  Google Scholar 

  9. Kosmider M, Dendzik Z, Palucha S, Gburski Z Computer simulation of argon cluster inside a single-walled carbon nanotube. J Mol Struct 704:197–291. https://doi.org/10.1016/j.molstruc.2004.02.050

    Article  ADS  Google Scholar 

  10. Feller SE, Yin D, Pastor RW, MacKerell AD (1977) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J 73:2269–2279. https://doi.org/10.1016/S0006-3495(97)78259-6

    Article  Google Scholar 

  11. Faramarzi S, Bonnett B, Scaggs CS, Ho A, Grodi D, Harvey E, Mertz B (2017) Molecular dynamics simulations as a tool for accurate determination of surfactant micelle properties. Langmuir 33:9934–9943. https://doi.org/10.1021/acs.langmuir.7b02666

    Article  Google Scholar 

  12. Munusamy E, Luft C, Pemberton M, Schwartz SD Structural properties of nonionic Monorhamnolipid aggregates in water studied by classical molecular dynamics simulations. J Phys Chem B 121:5781–5793. https://doi.org/10.1021/acs.jpcb.7b00997

    Article  Google Scholar 

  13. Dawid A, Gburski Z (2003) Interaction-induced light scattering in a fullerene surrounded by an ultrathin argon “atmosphere”: molecular dynamics simulation. Phys Rev A 68:065202. https://doi.org/10.1103/PhysRevA.68.065202

    Article  ADS  Google Scholar 

  14. Abel S, Dupradeau FY, Raman EP, MacKerell AD, Marchi M (2011) Molecular simulations of dodecyl-β-maltoside micelles in water: influence of the headgroup conformation and force field parameters. J Phys Chem B 115:487–499. https://doi.org/10.1021/jp109545v

    Article  Google Scholar 

  15. Gburski Z (1985) Convergence of memory functions for the vibrational dephasing process in 123 liquids. Chem Phys Lett 115:236–240. https://doi.org/10.1016/0009-2614(85)80687-4

    Article  ADS  Google Scholar 

  16. Abel S, Dupradeau FY, Marchi M (2012) Molecular dynamics simulations of a characteristic DPC micelle in water. J Chem Theory Comput 8:4610–4623. https://doi.org/10.1021/ct3003207

    Article  Google Scholar 

  17. Stassen H, Gburski Z (1994) Instantaneous normal-mode analysis of binary-liquid Ar-Kr mixtures. Chem Phys Lett 217:325–332. https://doi.org/10.1016/0009-2614(93)E1390-3

    Article  ADS  Google Scholar 

  18. Bruce C, Senapati S, Berkowitz ML, Perera L, Forbes MDE (2002) Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. J Phys Chem B 106:10902–10907. https://doi.org/10.1021/jp013616z

    Article  Google Scholar 

  19. Dawid A, Gburski Z (2003) Rayleigh light scattering in fullerene covered by a spherical argon film - a molecular dynamics study. J Phys Cond-Matter 15:2399–2405. https://doi.org/10.1088/0953-8984/15/14/315

    Article  ADS  Google Scholar 

  20. Sanders SA, Sammalkorpi M, Panagiotopoulos AZ (2012) Atomistic simulations of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates. J Phys Chem B 116:2430–2437. https://doi.org/10.1021/jp209207p

    Article  Google Scholar 

  21. Marrink SJ, deVries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760. https://doi.org/10.1021/jp036508g

    Article  Google Scholar 

  22. Gburski Z (1984) Line shape in collision-induced absorption – Mori theory. Chem Phys Letters 106:55–59. https://doi.org/10.1016/0009-2614(84)87010-4

    Article  ADS  Google Scholar 

  23. Santos AP, Panagiotopoulos AZ (2016) Determination of the critical micelle concentration in simulations of surfactant systems. J Chem Phys 144:044709. https://doi.org/10.1063/1.4940687

    Article  ADS  Google Scholar 

  24. Marrink SJ, Tieleman DP, Mark AE (2000) Molecular dynamics simulation of the kinetics of spontaneous micelle formation. J Phys Chem B 104:12165–12173. https://doi.org/10.1021/jp001898h

    Article  Google Scholar 

  25. Gwizdala W, Gorny K, Gburski Z (2008) Molecular dynamics and dielectric loss in 4-cyano-4-n-pentylbiphenyl (5CB) mesogene film surrounding carbon nanotube – computer simulation. J Molec Struct 887:148–151. https://doi.org/10.1016/j.molstruc.2007.12.045

    Article  ADS  Google Scholar 

  26. Dawid A, Dendzik Z, Gburski Z (2004) Molecular dynamics study of ultrathin argon layer covering fullerene molecule. J Molec Struct 704:173–176. https://doi.org/10.1016/j.molstruc.2004.01.065

    Article  ADS  Google Scholar 

  27. Schlenkrich M, Brickmann J, MacKerell AD, Karplus M (1996) An empirical potential energy function for phospholipids: criteria for parameter optimization and applications, In: K.M. Merz, B. Roux (eds), Biol Membr Mol Perspect Comput Exp, Birkhäuser Boston, Boston, pp 31–81. https://doi.org/10.1007/978-1-4684-8580-6_2

    Chapter  Google Scholar 

  28. Piatek A, Dawid A, Gburski Z (2011) The properties of small fullerenol cluster (C60(OH)24)7: computer simulation. Spectrochim Acta A 79:819–823. https://doi.org/10.1016/j.saa.2010.08.059

    Article  ADS  Google Scholar 

  29. Gburski Z, Gray CD, Sullivan DE (1983) Information-theory of line-shape in collision-induced absorption. Chem Phys Letters 100:383–386. https://doi.org/10.1016/0009-2614(83)80292-9

    Article  ADS  Google Scholar 

  30. Mizuguchi T, Ishizuka R, Matubayasi N (2015) Effect of diffuseness of micelle boundary on the solute distribution upon solubilization. Chem Phys Letters 624:19−23 doi.org/10.1016/j.cplett.2015.02.001

    Article  Google Scholar 

  31. Dawid A, Gburski Z (1999) Interaction-induced light-scattering in xenon cluster: molecular dynamics study. J Molec Struct 482-483:271–276. https://doi.org/10.1016/S0022-2860(98)00668-1

    Article  ADS  Google Scholar 

  32. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular 156 dynamics. J Comput Phys 151:283–312. https://doi.org/10.1006/jcph.1999.6201

    Article  ADS  MATH  Google Scholar 

  33. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  34. Lee S, Tran A, Allsopp M, Lim JB, Hénin J, Klauda JB (2014) CHARMM36 united atom chain model for lipids and surfactants. J Phys Chem B 118:547–556. https://doi.org/10.1021/jp410344g

    Article  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  ADS  Google Scholar 

  37. Dendzik Z, Gorny K, Gburski Z (2009) Cooperative dipolar relaxation of a glycerol molecular cluster in nanoscale confinement-a computer simulation study. J Physics-Condensed Matter 21:425101. https://doi.org/10.1088/0953-8984/21/42/425101

    Article  ADS  Google Scholar 

  38. Dawid A, Gorny K, Gburski Z (2011) The structural studies of fullerenol C-60(OH)(24) and nitric oxide mixture in water solvent - MD simulation. Nitric Oxide Biol Chem 25:373–380. https://doi.org/10.1016/j.niox.2011.08.004

    Article  Google Scholar 

  39. Gorny K, Dendzik Z, Raczynski P, Gburski Z (2011) Dynamic properties of propylene glycol confined in ZSM-5 zeolite matrix-a computer simulation study. Solid State Commun 152:8–12. https://doi.org/10.1016/j.ssc.2011.10.020

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Gburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makieła, D., Raczyński, P., Gburski, Z. (2018). The Dynamics of Water Molecules Confined in the Interior of DMPC Phospholipid Reverse Micelle. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_6

Download citation

Publish with us

Policies and ethics