Skip to main content

Structural Study of the Modified Cu0.4Co0.4Ni0.4Mn1.8O4 and Cu0.1Ni0.8Co0.2Mn1.9O4 Ceramics Using Combined Methods

  • Conference paper
  • First Online:
Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Included in the following conference series:

  • 663 Accesses

Abstract

Structural peculiarities of temperature-sensitive Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics caused by micro- and macro-modifications as well as Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics related with monolithization processes were studied using traditional and alternative techniques. Using two-state positron trapping model, it is established that positron trapping sites are the same for macro- and micro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Classic Tao-Eldrup model is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime. For modified Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics, it is shown that the amount of additional NiO phase extracted during sintering plays a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salomao R, Bôas MOV, Pandolfelli VC (2011) Porous alumina-spinel ceramics for high temperature applications. Ceram Int 37(4):1393–1399 https://doi.org/10.1016/j.ceramint.2011.01.012

    Article  Google Scholar 

  2. Feltz A, Pölzl W (2000) Spinel forming ceramics of the system FexNiyMn3–x–yO4 for high temperature NTC thermistor applications. J Eur Ceram Soc 20(14):2353–2366 https://doi.org/10.1016/S0955-2219(00)00140-0

    Article  Google Scholar 

  3. Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92(5):967–983. https://doi.org/10.1111/j.1551-2916.2009.02990.x

    Article  Google Scholar 

  4. Shpotyuk O, Balitska V, Brunner M, Hadzaman I, Klym H (2015) Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Phys B Condens Matter 459:116–121 https://doi.org/10.1016/j.physb.2014.11.023

    Article  ADS  Google Scholar 

  5. Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95 https://doi.org/10.5755/j01.ms.21.1.5189

    Google Scholar 

  6. Setter N (2001) Electroceramics: looking ahead. J Eur Ceram Soc 21(10):1279–1293. https://doi.org/10.1016/S0955-2219(01)00217-5

    Article  Google Scholar 

  7. Rousset A, Tenailleau C, Dufour P, Bordeneuve H, Pasquet I, Guillemet-Fritsch S, Schuurman S (2013) Electrical properties of Mn3−xCoxO4 (0≤ x≤ 3) ceramics: an interesting system for negative temperature coefficient thermistors. Int J Appl Ceram Technol 10(1):175–185. https://doi.org/10.1111/j.1744-7402.2011.02723.x

    Article  Google Scholar 

  8. Bondarchuk A, Shpotyuk O, Glot A, Klym H (2012) Current saturation in In2O3-SrO ceramics: a role of oxidizing atmosphere. Revista mexicana de física 58(4):313–316 http://www.scielo.org.mx/pdf/rmf/v58n4/v58n4a5.pdf

    Google Scholar 

  9. Deng ZY, Fukasawa T, Ando M, Zhang GJ, Ohji T (2001) Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. J Am Ceram Soc 84(11):2638–2644. https://doi.org/10.1111/j.1151-2916.2001.tb01065.x

    Article  Google Scholar 

  10. Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57(2):115–131 https://doi.org/10.1179/1743280411Y.0000000006

    Article  Google Scholar 

  11. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873. https://doi.org/10.1007/s11665-016-1931-9

    Article  Google Scholar 

  12. Shpotyuk O, Brunner M, Hadzaman I, Balitska V, Klym H (2016) Analytical description of degradation-relaxation transformations in nanoinhomogeneous spinel ceramics. Nanoscale Res Lett 11(1):499. https://doi.org/10.1186/s11671-016-1722-0

    Article  ADS  Google Scholar 

  13. Klym H, Balitska V, Shpotyuk O, Hadzaman I (2014) Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectron Reliab 54(12):2843–2848 https://doi.org/10.1016/j.microrel.2014.07.137

    Article  Google Scholar 

  14. Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors. Defect studies. Springer-Verlag, Berlin/Heidelberg/New York, p 378

    Book  Google Scholar 

  15. Shpotyuk O, Filipecki J (2003) Free volume in vitreous chalcogenide semiconductors: possibilities of positron annihilation lifetime study. Wyd-wo WSP w Czestochowie, Czestochowa

    Google Scholar 

  16. Klym H, Ingram A, Shpotyuk O, Filipecki J, Hadzaman I (2011) Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy. J Phys Conf Ser 289(1):012010 http://iopscience.iop.org/article/10.1088/1742-6596/289/1/012010/meta

    Article  Google Scholar 

  17. Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. In: 27th international conference on microelectronics proceedings (MIEL), pp 239–242. https://doi.org/10.1109/MIEL.2010.5490492

    Chapter  Google Scholar 

  18. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V (2016) Water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics: the PAL spectroscopy study. Nanoscale Res Lett 11(1):1. https://doi.org/10.1186/s11671-016-1352-6

    Article  Google Scholar 

  19. Shpotyuk O, Filipecki J, Ingram A, Golovchak R, Vakiv M, Klym H, Balitska V, Shpotyuk M, Kozdras A (2015) Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Res Lett 10(1):1–5. https://doi.org/10.1186/s11671-015-0764-z

    Article  Google Scholar 

  20. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V, Hotra O, Popov AI (2016) Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temp Phys 42(7):601–605 https://doi.org/10.1063/1.4959021

    Article  ADS  Google Scholar 

  21. Karbovnyk I, Bolesta I, Rovetskii I, Velgosh S, Klym H (2014) Studies of CdI2-Bi3 microstructures with optical methods, atomic force microscopy and positron annihilation spectroscopy. Mater Sci Poland 32(3):391–395. https://doi.org/10.2478/s13536-014-0215-z

    Article  ADS  Google Scholar 

  22. Hadzaman I, Klym H, Shpotyuk O (2014) Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. Int J Nanotechnol 11(9–10-11):843–853 https://doi.org/10.1504/IJNT.2014.063793

    Article  Google Scholar 

  23. Bodak O, Akselrud L, Demchenko P, Kotur B, Mrooz O, Hadzaman I, Shpotyuk O, Aldinger L, Seifert H, Volkov S, Pekhnyo V (2002) Crystal structure and electrical properties of Cu0.8Ni0.1Co0.2Mn1.9O4 electroceramics. J. Alloys Compd 347:14–23 https://doi.org/10.1016/S0925-8388(02)00675-8

    Article  Google Scholar 

  24. Klym H, Shpotyuk O, Ingram A, Calvez L, Hadzaman I, Yu K, Ivanusa A, Chalyy D (2017) Influence of free volumes on functional properties of modified chalcogenide glasses and oxide ceramics. Springer Proc Phys 195:479–493 https://doi.org/10.1007/978-3-319-56422-7_36

    Article  Google Scholar 

  25. Klym HI, Ivanusa AI, Kostiv YM, Chalyy DO, Tkachuk TI, Dunets RB, Vasylchyshyn II (2017) Methodology and algorithm of multicomponent analysis of positron annihilation spectra for nanostructured functional materials. J Nano Electron Phys 9(3):03037-1-6. https://doi.org/10.21272/jnep.9(3).03037

    Article  Google Scholar 

  26. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res, Sect A 374(2):235–244 https://doi.org/10.1016/0168-9002(96)00075-7

    Article  ADS  Google Scholar 

  27. Klym H, Ingram A (2007) Unified model of multichannel positron annihilation in nanoporous magnesium aluminate ceramics. J Phys Conf Ser 79(1):012014 https://doi.org/10.1088/1742-6596/79/1/012014

    Article  Google Scholar 

  28. Nambissan PMG, Upadhyay C, Verma HC (2003) Positron lifetime spectroscopic studies of nanocrystalline ZnFe2O4. J Appl Phys 93:6320 https://doi.org/10.1063/1.1569973

    Article  ADS  Google Scholar 

  29. Filipecki J, Ingram A, Klym H, Shpotyuk O, Vakiv M (2007) Water-sensitive positron-trapping modes in nanoporous magnesium aluminate ceramics. J Phys Conf Ser 79(1):012015. https://doi.org/10.1088/1742-6596/79/1/012015

    Article  Google Scholar 

  30. Hassan HE, Sharshar T, Hessien MM, Hemeda OM (2013) Effect of γ-rays irradiation on Mn–Ni ferrites: structure, magnetic properties and positron annihilation studies. Nucl Instrum Methods Phys Res, Sect B 304:72–79. https://doi.org/10.1016/j.nimb.2013.03.053

    Article  ADS  Google Scholar 

  31. Klym H, Ingram A, Shpotyuk O, Filipecki J, Hadzaman I (2010) Extended defects in insulating MgAl2O4 ceramic materials studied by PALS methods. IOP Conf Ser Mater Sci Eng 15(1):012044. https://doi.org/10.1088/1757-899X/15/1/012044

    Article  Google Scholar 

  32. Jean YC, Mallon PE, Schrader DM (2003) Principles and application of positron and positronium chemistry. Word Scientific, Singapore

    Book  Google Scholar 

  33. Mogensen OE (1995) Positron annihilation in chemistry. Springer, Berlin

    Book  Google Scholar 

  34. Nakanishi H, Jean YC, Schrader DM, Jean YC (1998) In positron and positronium chemistry. Elsevier, Amsterdam

    Google Scholar 

  35. Dlubek G, Sen Gupta A, Pionteck J, Hassler R, Krause-Rehberg R, Kaspar H, Lochhaas KH (2005) High-pressure dependence of the free volume in fluoroelastomers from positron lifetime and PVT experiments. Macromolecules 38(2):429–437. https://doi.org/10.1021/ma048310f

    Article  ADS  Google Scholar 

  36. Tao SJ (1972) Positronium annihilation in molecular substance. J Chem Phys 56(11):5499–5510 https://doi.org/10.1063/1.1677067

    Article  ADS  Google Scholar 

  37. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58 https://doi.org/10.1016/0301-0104(81)80307-2

    Article  ADS  Google Scholar 

Download references

Acknowledgments

H. Klym thanks the Ministry of Education and Science of Ukraine for support (grant No 0116 U004411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Klym .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klym, H. et al. (2018). Structural Study of the Modified Cu0.4Co0.4Ni0.4Mn1.8O4 and Cu0.1Ni0.8Co0.2Mn1.9O4 Ceramics Using Combined Methods. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_29

Download citation

Publish with us

Policies and ethics