Skip to main content

Dielectric Properties and AC Conductivity of Epoxy/Hybrid Nanocarbon Filler Composites

  • Conference paper
  • First Online:
Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Included in the following conference series:

Abstract

The electrical properties of epoxy composites filled with hybrid filler graphite nanoplatelets/carbon nanotubes (GNP/CNT) at different concentrations (0–5 wt.%) were measured using AC impedance spectroscopy with frequencies ranging from 1 kHz to 2 MHz. The complex impedance and real and imaginary parts of permittivity and electrical conductivity were determined. It was found that dielectric permittivity and electrical conductivity increase with increasing content of hybrid carbon filler and are characterized by percolative behavior. It was found that substitution of graphite nanoplatelets by carbon nanotubes promotes the shift of percolation threshold into lower filler content and enhances the electrical conductivity, permittivity, and dielectric loss (tanδ) of composites compared with composites filled only with graphite nanoplatelets. The increase of carbon nanotube content in composites increases the electrical conductivity and weakens its dependence on frequency (related to electron tunneling transport process in composites) due to more effective formation of a continuous carbon network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene composite materials. Nature 442:282–286

    Article  ADS  Google Scholar 

  2. Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  ADS  Google Scholar 

  3. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C-N (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  ADS  Google Scholar 

  4. Wang Z, Luo J, Zhao G–L (2014) Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites. AIP Adv 4:017139

    Article  ADS  Google Scholar 

  5. Zhang H-B, Yan Q, Zheng W-G, He Z, Zhong-Zhen Y (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924

    Article  Google Scholar 

  6. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu ZH, Ji G-Y, Yu Z-Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196

    Article  Google Scholar 

  7. He L, Tjong SC (2013) Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res Lett 8:132

    Article  ADS  Google Scholar 

  8. Mansour SA, Al-ghoury ME, Shalaan E, El Eraki MHI, Abdel-Bary EM (2011) Dielectric dispersion and AC conductivity of acrylonitrile butadiene rubber-poly(vinyl chloride)/graphite composite. J Appl Polym Sci 122(2):1226–1235

    Article  Google Scholar 

  9. Wang D, Bao Y, Zha J-W, Zhao J, Dang Z-M, Hu G-H (2012) Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces 4:6273–6279

    Article  Google Scholar 

  10. Brosseau C, Beroual A (2001) Effective permittivity of composites with stratified particles. J Phys D Appl Phys 34:704–710

    Article  ADS  Google Scholar 

  11. Hashemi R, Weng GJ (2016) A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96:474–490

    Article  Google Scholar 

  12. El Bouazzaoui S, Achour ME, Brosseau C (2011) Microwave effective permittivity of carbon black filled polymers: comparison of mixing law and effective medium equation predictions. J Appl Phys 110:074105

    Article  ADS  Google Scholar 

  13. Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85–90

    Article  Google Scholar 

  14. Sumfleth J, Adroher XC, Shulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J Mater Sci 44:3241–3247

    Article  ADS  Google Scholar 

  15. Kranauskaitė I, Banys J, Talik E, Kuznetsov V, Nunn N, Shenderova O (2015) Electric/dielectric properties of composites filled wiyh onion-like carbon and multiwalled carbon nanotubes. Lith J Phys 55(2):126–131

    Article  Google Scholar 

  16. Raza MA, Westwood A, Stirling C (2012) Carbon black/graphite nanoplatelet/rubbery epoxy hybrid composites for thermal interface applications. J Mater Sci 47:1059–1070

    Article  ADS  Google Scholar 

  17. Agnelli S, Cipolletti V, Musto S, Coombs M, Conzatti L, Pandini S, Riccò T, Galimberti M (2014) Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites. Express Polym Lett 8:436–449

    Article  Google Scholar 

  18. Patsidis AC, Kalaitzidou K, Anastassopoulos DL, Vradis AA, Psarras GC (2014) Graphite nanoplatelets and/or barium titanate/polymer nanocomposites: fabrication, thermomechanical properties, dielectric response and energy storage. J Chin Adv Mater Soc 2:207–221

    Article  Google Scholar 

  19. Lazarenko O, Vovchenko L, Matzui L, Perets Y (2011) The electronic transport properties of the composites with nanosized carbon fillers. Mol Cryst Liq Cryst 536:72/[304]–80/[312]

    Article  Google Scholar 

  20. Elimat ZM (2015) AC-impedance and dielectric properties of hybrid polymer composites. J Compos Mater 49(1):3–15

    Article  Google Scholar 

  21. Qiang Z, Liang G, Aijuan G, Li Y (2014) The dielectric behavior and origin of high-k composites with very low percolation threshold based on unique multi-branched polyaniline/carbon nanotube hybrids and epoxy resin. Compos Part A 64:1–10

    Article  Google Scholar 

  22. Perets Y, Aleksandrovych L, Melnychenko M, Lazarenko O, Vovchenko L, Matzui L (2017) The electrical properties of hybrid composites based on multiwall carbon nanotubes with graphite nanoplatelets. Nanoscale Res Lett 12(406):406

    Article  ADS  Google Scholar 

  23. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50:689–698

    Article  Google Scholar 

  24. Samir Z, Merabet YEL, Grasa MPF, Soreto Teixera S, Achour ME, Costa LC (2016) Complex impedance study of carbon nanotubes/polyester polymer composites. In: Dielectric Materials and Applications: ISyDMA’2016 Materials Research Forum LLC Materials Research Proceedings 1:13–16. https://doi.org/10.21741/2474-395X/1/4

  25. Banerjee S, Kumar A (2012) Relaxation and charge transport phenomena in polyaniline nanofibers: swift heavy ion irradiation effects. J Non-Cryst Solids 358:2990–2998

    Article  ADS  Google Scholar 

  26. Prateek, Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  Google Scholar 

  27. Wang F, Wang J-W, Li S-q, Xiao J (2009) Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polym Bull 63:101–110

    Article  Google Scholar 

  28. Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bai J (2011) Giant dielectric permittivity Nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115:5515–5552

    Article  Google Scholar 

  29. Mathieu B, Anthony C, Arnaud A, Lionel F (2015) CNT aggregation mechanisms probed by electrical and dielectric measurements. J Mater Chem C 3:5769

    Article  Google Scholar 

  30. Shi S-L, Liang J (2006) Effect of multiwall carbon nanotubes on electrical and dielectric properties of yttria-stabilized zirconia ceramic. J Am Ceram Soc 89:3533–3535

    Article  Google Scholar 

  31. Lorenz H, Fritzsche J, Das A, Stueckelhuber K, Jurk R, Heinrich G, Klueppel M (2009) Advanced elastomer nano-composites based on CNT-hybrid filler systems. Compos Sci Technol 69:2135–2143

    Article  Google Scholar 

  32. Wu C, Huang X, Wang G, Wu X, Yang K, Lib S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22:7010

    Article  Google Scholar 

  33. Liu L, Grunlan JC (2007) Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv Funct Mater 17(14):2343–2348

    Article  Google Scholar 

  34. Zhang X, Liang G, Chang J, Gu A, Li Y, Zhang W (2012) The origin of the electric and dielectric behavior of expanded graphite–carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon 50:4995–5007

    Article  Google Scholar 

  35. Trihotri M, Dwivedi UK, Malik MM, Khan FH, Qureshi MS (2016) Study of low weight percentage filler on dielectric properties of MWCNT-epoxy nanocomposites. J Adv Dielectr 6(3):1650024 (9 pages)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila L. Vovchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vovchenko, L.L., Matzui, L.Y., Perets, Y.S., Milovanov, Y.S. (2018). Dielectric Properties and AC Conductivity of Epoxy/Hybrid Nanocarbon Filler Composites. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_24

Download citation

Publish with us

Policies and ethics