Skip to main content

Nanostructural and Nanochemical Processes in Peloid Sediments Aided with Biogeocenosis

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Abstract

Nanostructural and nanochemical processes aided with biogeocenosis in iron-oxide-hydroxide-silicate systems (IOHSS) were studied with physicochemical, colloid-chemical, and biocolloid methods using theoretical concepts of physicochemical and classic mechanics, and geomechanics. As long as general properties of such systems closely match the properties of peloid sediments (PS), the Black Sea and Azov Sea clay-contained PS, peloids and clays were selected as general research materials. Obtained experimental results have shown that nanostructural and nanochemical processes in IOHSS and sediments thereof are controlled by appropriate metabolic processes of microorganisms that are part of the studied systems and sediments. It was established that such microorganisms generally consist of iron-reducing and autotrophic bacteria that produce surface-active substances (surfactants) – amino acids and other organic compounds. Such surfactants take part in physicomechanical hydration self-dispersing processes of micro- and macroparticles in IOHSS and PS up to colloid and nanoparticles. It is shown that at the same time, due to bacterial reactions, Fe3+ of micro- and macroparticles turns into Fe2+ in the emerging nanoclusters and nanoparticles of iron-containing minerals (hydroxides and silicates). The latter are transformed chemically or microbiologically in unstable layered double hydroxides Fe2+· and Fe3+ (green rust) under the influence of CO2 and O2 of air, mainly of GR(CO3 2−) type. Respectively, chemical processes between O2 of air and green rust (GR) lead to their sequential transformation into nanostructures such as: Fe3O4 → γ- FeOOH (Lepidigrochitis) → α – FeOOH (Goethite). The last in the contact zones of colloidal, micro-, and macroparticles takes part in the nanochemical processes of creating coagulation–condensation structural bonds in IOHSS that influence upon their rheological and other physical–mechanical characteristics. It is shown that with increasing concentration of solid phase in IOHSS of peloids type, contact links change as follows: coagulation → interphase → solid-state → crystallization. Thus, the flow of IOHSS dispersions with increasing concentration of solid phase and the content of nanoparticles is changed in the following line: thixotropy → dilatance → reopecession → hyperanomaly of viscosity → abnormal plastic flow of solid structures. With the help of theoretical ideas of physicochemical and classical mechanics and geomechanics, an abnormal plastic flow mechanism is established. Examples are available of peloids and individual clays (bentonites and glauconites) application in spa and medical practice as antibacterial compositions and for the correction of a genetically damaged blood coagulation system in hemophilia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prokopenko VA, Kovzun IG, Ulberg ZR (2014) The creative potential of scientific discovery. Her Natl Acad Sci Ukr 10:52–61

    Google Scholar 

  2. Oleinik VA, Panko AV, Kovzun IG et al (2013) Nanochemical processes in solid-phase reduction of Ferrioxide-silicate materials. Proc NAP 2(3):03AET10

    Google Scholar 

  3. Kovzun IG, Ulberg ZR, Panko AV et al Colloid-chemical and Nanochemical processes in Peloids on basis of ferrous clay minerals. In: Fesenko O, Yatsenko L (eds) Nanoplasmonics, Nanooptics surface studies and applications, springer proceedings in physics, vol 167. Springer Proceedings in Physics, Heidelberg, pp 233–243

    Google Scholar 

  4. Panko AV, Kovzun IG, Ulberg ZR, Oleinik VA, Nikipelova EM, Babov KD (2016) Colloid-chemical modification of peloids with nano- and microparticles of natural minerals and their practical use. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, surface studies, and applications, vol 183. Springer Proceedings in Physics, Heidelberg, pp 163–177

    Chapter  Google Scholar 

  5. Oleinik VA, Panko AV, Kovzun IG et al (2016) Processes of metamorphism in iron-oxide-silicate rocks, their microbiological, nanochemical and nanostructural transformations. Proc NAP 5(3):02NABM01

    Google Scholar 

  6. Loboda MV, Babov KD, Zolotarjova TA, Nikipelova EM (2006) Lechebnye grjazi (peloidy) Ukrainy. Chast 1 (Therapeutical muds (peloids) of Ukraine. Part 1). Kuprijanova, Kyiv

    Google Scholar 

  7. Emel’janov VA (2003) Osnovy morskoj geojekologii (Basics of marine geoecology). Naukova dumka, Kyiv

    Google Scholar 

  8. Nikipelova OM (2014) Results of physicochemical studies of Dashukov deposit’s bentonite (Rezul’taty fizyko-khimichnykh doslidzhen bentonitu Dashukivs’koho rodovyshcha). Odesa Natl Univ Herald Chem 3:70–75

    Google Scholar 

  9. Nikipelova OM, Nikolenko SI, Nedoluzhenko DI (2014) Physico-chemical properties and mechanism of bactericidal action of different clays (Fizyko-khimichni vlastyvosti ta mekhanizm bakterytsydnoyi diyi hlyn riznoho pokhodzhennya). Med Rehabil Spa Ther Physiother 1:39–43

    Google Scholar 

  10. Frye K (ed) (1981) The encyclopedia of mineralogy, encyclopedia of earth sciences, vol IV B. Hutchinson Ross Publishing Company, Stroudsbu

    Google Scholar 

  11. Shherbak NP (ed) (1990) Mineraly Ukrainy: kratkij spravochnik (Minerals of Ukraine: quick-reference book). Naukova dumka, Kyiv

    Google Scholar 

  12. Rozanov AJ, Zavarzin GA (1997) Bakterial’naja paleontologija (Bacterial paleontology). Vestnik RAN 67(3):241–245

    Google Scholar 

  13. Nikipelova OM, Solodova LB (2008) Manual on control methods of peloids and preparations on their basis. Physico-chemical research (Posibnyk z metodiv kontrolyu peloyidiv ta preparativ na yikh osnovi. Fizyko-khimichni doslidzhennya). Ukrainian Publishing Union named after Yuri Lipy, Odesa

    Google Scholar 

  14. Nikipelova OM, Hlukhovs’ka SM, Koval’ova IP (2010) Manual on control methods of medical muds (peloids), spices and preparations on their basis, microbiological research (Posibnyk z metodiv kontrolyu likuval’nykh hryazey (peloyidiv), ropy ta preparativ na yikh osnovi, Mikrobiolohichni doslidzhenya). Even, Odesa

    Google Scholar 

  15. Oleynik VA, Panko AV, Kovzun IG et al (2016) Influence of nanodispesed and microdispersed structures on metamorphism of iron oxide silicate ore materials (Vliyaniye nanodispersnykh i mikrodipersnykh struktur na protsessy metamorfizma zhelezooksidnosilikatnykh rudnykh materiaov). Nanosistemi Nanomateriali, Nanotehnologii 14(2):245–258

    Google Scholar 

  16. Refait P, Abdelmoula M, Genin J-MR (1998) Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros Sci 40:1547–1560

    Article  Google Scholar 

  17. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses, 2th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Jambor JL, Dutrizac JE (1998) The occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98(7):2549–2585

    Article  Google Scholar 

  19. Huang PM, Bollag J-M, Senesi N (2002) Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. Wiley, New York

    Google Scholar 

  20. Grassian VH (2005) Environmental catalysis. Taylor & Francis Group, New York

    Book  Google Scholar 

  21. Deng Y, Stumm W (1994) Reactivity of aquatic iron(III) oxyhydroxides simplications for redox cycling of iron in natural water. Appl Geochem 9:3–36

    Article  Google Scholar 

  22. Geosci CR, Ona-Nguema G, Stemmler S et al (2006) Bioreduction of ferric species and biogenesis of green rusts in soils. Comptes Rendus Geosci 338:447–455

    Article  ADS  Google Scholar 

  23. Ona-Nguema G, Carteret C, Benali O et al (2004) Competitive formation of hydroxycarbonate green rust I vs hydroxysulphate green rust II in Shewanella putrefaciens cultures. Geomicrobiol J 21:79–90

    Article  Google Scholar 

  24. Zachara JM, Kukkadapu RK, Fredrickson JK et al (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol J 19:179–207

    Article  Google Scholar 

  25. Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288

    Article  ADS  Google Scholar 

  26. Ona-Nguema G, Carteret C, Benali O et al (2004) Competitive formation of Hydroxycarbonate Green Rust 1 versus Hydroxysulphate Green Rust 2 in Shewanella putrefaciens Cultures. Geomicrobiol J 21(2):79–90

    Article  Google Scholar 

  27. Shchukin YD, Pertsov AV, Amelina YA (2006) Colloid chemistry (Kolloidnaya khimiya) “High School”, Moscow

    Google Scholar 

  28. Panko AV, Tsyganovich YA, Kozun IG, Prokopenko VA, Oleynik VA, Nikipelova EM (2016) Modeling of nanostructural processes in ore materials and peloids (Modelirovaniye nanostrukturnykh protsessov v rudnykh materialakh i peloidakh). Nanosistemi Nanomateriali Nanotehnologii 14(4):609–626

    Google Scholar 

  29. Kovzun IG, Pan’ko AV, Yats’kiv EV, Nikipelova OM et al (2008) Application of Nanosize Clay-Minerals’ Systems in the Complex Therapy for Haemophilia ‘A’ patients. Nanosistemi Nanomateriali Nanotehnologii 6(2):613–623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panko, A.V., Kovzun, I.G., Nikipelova, O.M., Prokopenko, V.A., Tsyganovich, O.A., Oliinyk, V.O. (2018). Nanostructural and Nanochemical Processes in Peloid Sediments Aided with Biogeocenosis. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_13

Download citation

Publish with us

Policies and ethics