Skip to main content

Structure and Electrical/Dielectric Properties of Ion-Conductive Polymer Composites Based on Aliphatic Epoxy Resin and Lithium Perchlorate Salt

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Abstract

Nowadays, one of the most important research directions in development and creation of functional polymeric materials is a search of new solid electroactive polymers with high ionic conductivity at elevated temperatures. Particularly, the widening range of materials, which can be used for this purpose, is relevant. The present work is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG-1) that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of the synthesized polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. The presence of ether oxygen in DEG-1 macromolecules provides a transfer mechanism of the lithium cations with the ether oxygen similar to polyethylene oxide. Thus, the obtained hybrid polymers have high values of ionic conductivity σ′ (approximately 10−3 S/cm) and permittivity ε′ (6 × 105) at elevated temperatures (200°С). On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature was also found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sudhakar YN, Selvakumar M, Krishna BD (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285

    Article  Google Scholar 

  2. Zygadło-Monikowska E, Florjańczyk Z, Ostrowska J, Bołtromiuk P, Frydrych J, Sadurski W, Langwald N (2011) Synthesis and characterization of new trifluoroalkoxyborates lithium salts of ionic liquid properties. Electrochim Acta 57:66–73

    Article  Google Scholar 

  3. Bergman M, Bergfelt A, Sun B, Bowden T, Brandell D, Johansson P (2015) Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis (trifluoromethanesulfonimide). Electrochim Acta 175:96–103

    Article  Google Scholar 

  4. Bo C, Qiang X, Zhen H, Yanran Z, Shaojie C, Xiaoxiong X (2016) One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 331:322–331

    Article  Google Scholar 

  5. Wei L, Nian L, Jie S, Po-Chun H, Yuzhang L, Hyun-Wook L, Yi C (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745

    Article  ADS  Google Scholar 

  6. Mohamed TA, Padmanathan N, Selladurai S (2014) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:825–840

    Google Scholar 

  7. Guilherme LA, Borges RS, Moraes EMS, Silva GG, Pimentac MA, Marletta A, Silva RA (2007) Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes. Electrochim Acta 53:1503–1511

    Article  Google Scholar 

  8. Chai MN, Isa MIN (2012) Investigation on the conduction mechanism of carboxyl methylcellulose-oleic acid natural solid polymer electrolyte. Int J Adv Technol Eng Res 2:36–39

    Google Scholar 

  9. Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7: 2596–2615

    Google Scholar 

  10. Ahmad. Z, Isa MIN (2012) Ionics conduction via correlated barrier hoping mechanism in cmc.sa solid biopolymer electrolytes. Int J Latest Res Sci Technol 1:70–75

    Google Scholar 

  11. Sharma P, Kanchan DK (2013) A comparison of effect of PEG and EC plasticizers on relaxation dynamics of PEO–PMMA–AgNO3 polymer blends. Ionics 19:1285–1290

    Article  Google Scholar 

  12. Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696

    Article  Google Scholar 

  13. Kesavan K, Mathew CM, Rajendran S, Subbu C, Ulaganathan M (2015) Solid polymer blend electrolyte based on poly(ethylene oxide) and poly(vinyl pyrrolidone) for lithium secondary batteries. Brazilian J Physics 45:19–27

    Article  ADS  Google Scholar 

  14. Das S, Ghosh A (2015) Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Adv 5. https://doi.org/10.1063/1.4913320

  15. Pradhan DK, Tripathy SN (2013) Effect of plasticizer concentration on microstructural and dielectric properties of polymer composite electrolyte. Adv Chem Sci 2:114–121

    Google Scholar 

  16. Dey A, Karan S, De SK (2009) Effect of nanofillers on thermal and transport properties of potassium iodide polyethylene oxide solid polymer electrolyte. Solid State Commun 149:1282–1287

    Article  ADS  Google Scholar 

  17. Yao Z, Jingqing L, Hong H, Shichun J (2012) Effects of lithium perchlorate on poly(ethylene oxide) spherulite morphology and spherulite growth kinetics. J Appl Polym Sci 123: 1935–1943

    Article  Google Scholar 

  18. Machado GO, Prud’homme RE, Pawlicka A (2007) Сonductivity and thermal analysis studies of solid polymeric electrolytes based on plasticized hydroxyethyl cellulose. e-Polymers 7(1):1335–1343

    Article  Google Scholar 

  19. Kyung JL, Yong WK, Joo HK, Jong HK (2007) Supramolecular polymer/metal salt complexes containing quadruple hydrogen bonding units. J Polym Sci B Polym Phys 45:3181–3188

    Article  Google Scholar 

  20. Anji RP, Hee-Woo R (2016) The effects of LiTDI salt and POSS-PEG (n = 4) hybrid nanoparticles on crystallinity and ionic conductivity of PEO based solid polymer electrolytes. Sci Adv Mater 8(10):931–940

    Google Scholar 

  21. Marcinek M, Syzdek J, Marczewski M, Piszcz M, NiedzickiL KM, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łężak P, Zukowska Z, Zalewska A, Wieczorek W (2015) Electrolytes for Li-ion transport – review. Solid State Ionics 276:107–126

    Article  Google Scholar 

  22. Mindemark J, Sun B, Törmä E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 298:166–170

    Article  Google Scholar 

  23. Gray FM (1997) Polymer electrolytes. Published Royl Society of Chemistry, London

    Google Scholar 

  24. Feng Q, Yang J, Yu Y, Tian F, Zhang B, Feng M, Wang S (2017) The ionic conductivity, mechanical performance and morphology of twophase structural electrolytes based on polyethylene glycol, epoxy resin and nano-silica. Mater Sci Eng B 219:37–44

    Article  Google Scholar 

  25. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  Google Scholar 

  26. Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind RM, Wiemhöfer H-D, Winter M, Gores HJ (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42:39–56

    Google Scholar 

  27. Yu Y, Zhang B, Wang Y, Qi G, Tian F, Yang J, Wang S (2016) Co-continuous structural electrolytes based on ionic liquid, epoxy resin and organoclay: effects of organoclay content. Mater Des 104:126–133

    Article  Google Scholar 

  28. Wu F, Chen N, Chen R, Wang L, Li L (2017) Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy 31:9–18

    Article  Google Scholar 

  29. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222

    Article  Google Scholar 

  30. Lv P, Yang J, Liu G, Liu H, Li S, Tang C, Mei J, Li Y, Hui D (2017) Flexible solid electrolyte based on UV cured polyurethane acrylate/succinonitrile-lithium salt composite compatibilized by tetrahydrofuran. Compos Part B 120:35–41

    Article  Google Scholar 

  31. Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet J-P (2017) Electrochemical performance of polymer electrolytes based on poly(vinyl alcohol)/poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries. Electrochim Acta 240:371–378

    Article  Google Scholar 

  32. Polu AR, Rhee H-W (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42(10):7212–7219

    Article  Google Scholar 

  33. Rocco AM, Fonseca CP, Loureiro FAM, Pereira RP (2004) A polymeric solid electrolyte based on a poly(ethylene oxide)/poly(bisphenol A-co-epichlorohydrin) blend with LiClO4. Solid State Ionics 166:115–126

    Article  Google Scholar 

  34. Łasińska AK, Marzantowicz M, Dygas JR, Krok F, Florjańczyk Z, Tomaszewska A, Zygadło-Monikowska E, Żukowska Z, Lafont U (2015) Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim Acta 169:61–72

    Article  Google Scholar 

  35. Kiselev YM (2008) Coordination chemistry. Integral, Moscow

    Google Scholar 

  36. Johnston K, Pavuluri SK, Leonard MT, Desmulliez MPY, Arrighi V (2015) Microwave and thermal curing of an epoxy resin for microelectronic applications. ThermochimActa 616: 100–109

    Article  Google Scholar 

  37. Boumedienne N, Faska Y, Maaroufi A, Pinto G, Vicente L, Benavente R (2017) Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites. J Phys Chem Solids 104:185–191

    Article  ADS  Google Scholar 

  38. Fache M, Montérémal C, Boutevin B, Caillol S (2015) Amine hardeners and epoxy cross-linker from aromatic renewable resources. Eur Polym J 73:344–362

    Article  Google Scholar 

  39. Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J Phys Chem B 102:8725–8731

    Article  Google Scholar 

  40. Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int J Electrochem Sci 6:4737–4748

    Google Scholar 

  41. Daigle J-C, Asakawa Y, Vijh A, Hovington P, Armand M, Zaghib K (2016) Exceptionally stable polymer electrolyte for a lithium battery based on cross-linking by a residue-free process. J Power Sources 332:213–221

    Article  Google Scholar 

  42. Matkovska LK, Iurzhenko MV, Mamunya YP, Matkovska OK, Boiteux G, Lebedev EV (2017) The ion-conducting composites based on the aliphatic and aromatic epoxy oligomers and the lithium perchlorate salt. Polym J 39(3):147–153

    Article  Google Scholar 

  43. Matkovska L, Iurzhenko M, Mamunya Y et al (2017) Structural peculiarities of ion-conductive organic-inorganic polymer composites based on aliphatic epoxy resin and salt of lithium perchlorate. Nanoscale Res Lett 12:423 doi.org/10.1186/s11671-017-2195-5

    Article  ADS  Google Scholar 

  44. Matkovska L, Iurzhenko M, Mamunya Y, Matkovska O, Demchenko V, Lebedev E, Boiteux G, Serghei A (2014) Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate. Nanoscale Res Lett 9:674. https://doi.org/10.1186/1556-276X-9-674

    Article  ADS  Google Scholar 

  45. Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin-Heidelberg

    Book  Google Scholar 

  46. Psarras GC, Manolakaki E, Tsangaris GM (2003) Dielectric dispersion and ac conductivity in iron particles loaded polymer composites. Compos Part A 34:1187–1198

    Article  Google Scholar 

  47. Pershina KD, Kazdobin KO (2012) The impedance spectroscopy of the electrolytic materials. Ukrainian Education, Kyiv

    Google Scholar 

  48. Li L, Wang F, Li J, Yang X, You J (2017) Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrog Energy 42(17):12087–12093

    Article  Google Scholar 

  49. Poornima Vijayan P, Puglia D, Al-Maadeed MASA, Kenny JM, Thomas S (2017) Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of ‘micro’ and ‘nano’ scale. Mater Sci Eng 116. https://doi.org/10.1016/j.mser.2017.03.001

  50. Shtompel VI, Kercha YY (2008) Structure of linear polyurethanes. Scientific Mind, Kiev

    Google Scholar 

  51. Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly (ethylene oxide) blends. Spectrochim Acta A Mol Biomol Spectrosc 76:287–292

    Article  ADS  Google Scholar 

  52. Abarna S, Hirankumar G (2014) Study on new lithium ion conducting electrolyte based on polethylene glycol-p-tertoctyl phenyl ether and lithium perchlorate. Int J ChemTech Res 6:5161–5167

    Google Scholar 

  53. Bellamy L (1963) Infrared spectra of complex molecules. Foreign Lit. Pub. House, Moscow

    Google Scholar 

  54. Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc 65:1234–1240

    Article  ADS  Google Scholar 

  55. Mamunya Y, Iurzhenko M, Lebedev E, Levchenko V, Chervakov O, Matkovska O, Sverdlikovska O (2013) Electroactive polymer materials. Alpha-Reklama, Kyiv

    Google Scholar 

  56. Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC (2004) Investigating the effect of miscibility on the ionic conductivity of LiClO4/PEO/PCL ternary blends. Macromolecules 37:8424–8430

    Article  ADS  Google Scholar 

  57. Fullerton-Shirey SK, Maranas JK (2009) Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42:2142–2156

    Article  ADS  Google Scholar 

  58. Kuo PL, Liang WJ, Chen TY (2003) Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer 44:2957–2964

    Article  Google Scholar 

  59. Olsher U, Izatt RM, Bradshaw JS, Dalley NK (1991) Coordination chemistry of lithium ion: a crystal and molecular structure review. Chem Rev 91:137–164

    Article  Google Scholar 

  60. Matkovska L, Tkachenko I, Demchenko V, Iurzhenko M, Mamunya Y (2017) Influence of lithium perchlorate on structure of epoxy polymeric composites. Nanosistemi Nanomateriali Nanotehnologii 15:175–184 Ukraine

    Google Scholar 

  61. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, Ltd, New York

    Google Scholar 

  62. Chini M, Crotti P, Macchia F (1990) Metal salts as new catalysts for mild and efficient aminolysis of oxiranes. Tetrahedron Lett 31:4661–4664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matkovska, L.K., Iurzhenko, M.V., Mamunya, Y.P., Demchenko, V., Boiteux, G. (2018). Structure and Electrical/Dielectric Properties of Ion-Conductive Polymer Composites Based on Aliphatic Epoxy Resin and Lithium Perchlorate Salt. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_11

Download citation

Publish with us

Policies and ethics