Skip to main content

The Cyclorrhaphan Larva as a Data Source

  • Chapter
  • First Online:
Ecomorphology of Cyclorrhaphan Larvae (Diptera)

Part of the book series: Zoological Monographs ((ZM,volume 4))

  • 305 Accesses

Abstract

In this chapter, the main findings of the book are summarised and discussed with the twin aims of identifying common features within and between contrasts such as taxon, feeding mode and ecomorphology and extending the discussion to consider the role of the larval stage in the diversification of the Cyclorrhapha. Based on examples from earlier chapters, the value of making progress by allowing morphological and movement analyses to inform one another is evaluated. Assessments such as these support the idea that larvae are underestimated as a data source and that they are many times richer in potential than under prevailing hypotheses of similarity and convergence. The origins and roles of trophic and locomotor traits that distinguish the Cyclorrhapha are reassessed and feeding modes compared and contrasted. Switching between feeding modes is a putative contributor to diversification and requires improved assessment and evaluation. Provisional assessment of exemplar lineages with multiple feeding modes has identified change in individual trophic features and these are putative candidates underpinning switches in feeding modes. Against a background of direct and indirect opportunities for phytophagy, saprophagy and zoophagy provided by the diversification of angiosperms and feeding mode switching, adaptive larval features also include component subdivision and recombination, modularity and character lability. The latter in particular seems to be a major contributor to the rapid evolution of the higher Cyclorrhapha. Furthermore, adaptation potential or adaptability appears to increase over phylogenetic distances measured by the number of nodes between taxa. This may be due to conservative evolution in which genetic and developmental mechanisms are accrued and modified rather than becoming redundant or lost. Accrual of adaptability may be another significant contributor to high levels of trophic and locomotor specialisation, ecomorphological variation and diverse life cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro RI, Borden JH (1980) Predation by Lonchaea corticis (Diptera: Lonchaeidae) on the White Pine Weevil, Pissodes strobi (Coleoptera: Curculionidae). Can Entomol 112:1259–1270

    Article  Google Scholar 

  • Bauer G (1986) Life-history strategy of Rhagoletis alternata (Diptera: Trypetidae), a fruit fly operating in a ‘non-interactive’ system. J Anim Ecol 55:785–794

    Article  Google Scholar 

  • Berrigan D, Pepin DJ (1995) How maggots move: allometry and kinematics of crawling in larval Diptera. J Insect Physiol 41:329–337

    Article  CAS  Google Scholar 

  • Beutel RG, Friedrichb F, Thomas Hörnschemeyer T, Pohla H, Frank Hünefelda F, Beckmannd F, Meier R, Misof B, Whiting MF, Vilhelmsenh L (2010) Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics 26:1–15

    Article  Google Scholar 

  • Borkent A, Brown BV, Adler PH, De Souza Amorim D, Barber K, Bickel D, Boucher S, Brooks SE, Burger J, Burington ZL, Capellari RS, Costa DNR, Cumming JM Curler G, Dick CW, Epler JH Fisher E, Gaimari SD, Gelhaus J, Grimaldi DA, Hash J, Hauser M, Hippa H, Ibáñez- Bernal S, Jaschhof M, Kameneva EP, Kerr PH, Korneyev V, Korytkowski CA, Kung G-A, Kvifte GM, Lonsdale O, Marshall SA, Mathis WN, Michelsen V, Naglis S, Norrbom AL, Paiero S, Pape T, Pereira-Colavite A, Pollet M, Rochefort S, Rung A, Runyon JB, Savage J, Silva VC, Sinclair BS, Skevington JH, Stireman JO, Swann J, Vilkamaa P, Wheeler T, Whitworth T, Wong M, Wood DM, Woodley N, Yau T, Zavortink TJ, Zumbado MA (2018) Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: why inventory is a vital science. Zootaxa 4402:53–90

    Article  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Book  Google Scholar 

  • Chandler PJ (1991) Attraction of Palloptera usta Meigen (Diptera: Pallopteridae) to recently cut conifer wood and other notes on Pallopteridae. Br J Entomol Nat Hist 4:85–87

    Google Scholar 

  • Chapman EG, Foote BA, Malukiewicz J, Hoeh WR (2006) Parallel evolution of larval morphology and habitat in the snail-killing fly genus Tetanocera. J Evol Biol 19:1459–1474

    Article  CAS  PubMed  Google Scholar 

  • Chaudonneret J (1983) Les pieces buccales des Insectes: thème et variations II. Bull Bourgogne 36:116–133

    Google Scholar 

  • Cheverud JM (1996) Developmental integration and the evolution of pleiotropy. Am Zool 36:44–50

    Article  Google Scholar 

  • Cook EF (1949) The evolution of the head in the larvae of the Diptera. Microentomology 14:1–57

    Google Scholar 

  • Courtney GW, Sinclair BJ, Meier R (2000) Morphology and terminology of Diptera larvae. In: Papp L, Darvas B (eds) Contributions to a manual of Palaearctic Diptera, vol 1. Science Herald, Budapest, pp 85–161

    Google Scholar 

  • Creager DB, Spruijt FJ (1935) The relation of certain fungi to larval development of Eumerus tuberculatus Rond. (Syrphidae, Diptera). Ann Entomol Soc Am 28:425–437

    Article  Google Scholar 

  • D’Herculais JK (1875) Recherches sur l’organisation et le development des Volucelles, Paris, p 208

    Google Scholar 

  • de Meijere JCH (1944) Over de metamorphose van Metopia leucocephala Rossi, Cacoxenus indagator Lw, Palloptera saltuum L., Paranthomyza nitida Mg. en Hydrellia nigripes Zett. (Dipt. ). Tijdsch voor Entomol 86:57–61

    Google Scholar 

  • de Moor FC (1973) Notes on a syrphid fly, Eumerus obliquus (Fabricius) (Diptera: Syrphidae). Arnoldia 6:1–7

    Google Scholar 

  • Dowding VM (1967) The function and ecological significance of the pharyngeal ridges occurring in the larvae of some cyclorrhaphous Diptera. Parasitology (Cam) 57:371–388

    Article  Google Scholar 

  • Dyte CE (1993) The occurrence of Thrypticus smaragdinus Gest. (Dipt.: Dolichopodidae) in Britain, with remarks on plant host in the genus. Entomologist 112:81–84

    Google Scholar 

  • Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomonograph 8:1–907

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2010) Diversity in obscurity: fossil flowers and the early history of angiosperms. Philos Trans R Soc Lond B Biol Sci 365:369–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Greve L (1993) Family Pallopteridae (Diptera) in Norway. Fauna Norvegica Ser B 40:37–44

    Google Scholar 

  • Günther MN, Nettesheim G, Shubeita GT (2016) Quantifying and predicting Drosophila larvae crawling. Sci Rep 6:27972. https://doi.org/10.1038/srep27972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley JC (1961) A taxonomic account of the larvae of some British Syrphidae. Proc Zool Soc Lond 136:505–573

    Article  Google Scholar 

  • Headrick DH, Goeden RD (1996) The biology of nonfrugivorous Tephritid fruit flies. Ann Rev Entomol 43:217–241

    Article  Google Scholar 

  • Heckscher ES, Lockery SR, Doe CQ (2012) Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J Neurol Sci 32:12460–12471

    CAS  Google Scholar 

  • Hennig W (1943) Ein Beitrag zum Problem der “Beziehungen zwischen Larven und Imaginalsystematik”. Arb Morphol Taxon Ent Berlin-Dahlem 10:138–144

    Google Scholar 

  • Hennig W (1952) Die larvenformen der Dipteren, vol 3. Akademie-Verlag, Berlin

    Google Scholar 

  • Hennig W (1973) Diptera (Zweiflügler). In: Helmcke JG, Starck D, Wermuth H (eds) Handbuch der Zoologie. De Gruyter, Berlin, Vol IV, 2 Hälfte: Insecta, 2/31, Lfg

    Google Scholar 

  • Hering EM (1943) Dipteren-biologien I. Mitteil Deutschen Entomol Gesell 12:16

    Google Scholar 

  • Hernandez MC (2008) Biology of Thrypticus truncatus and Thrypticus sagittatus (Diptera: Dolichopodidae), petiole miners of water hyacinth, in Argentina, with morphological descriptions of larvae and pupae. Ann Entomol Soc Am 10:1041–1049

    Article  Google Scholar 

  • Hodson WEH (1932) The large narcissus fly, Merodon equestris, Fab. (Syrphidae). Bull Entomol Res 23:429–448

    Article  Google Scholar 

  • Johannsen OA, Crosby CR (1913) The life history of Thrypticus muhlenbergiae sp. nov. (Diptera). Psyche 20:164–166

    Article  Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organisation of the head in the embryo of Drosophila melanogaster. Roux’s Arch Dev Biol 195:359–377

    Article  Google Scholar 

  • Kandybinda MN (1961) On the diagnostics of the larvae of fruit-flies (Diptera, Tephritidae). Ent Rev 40:103–110

    Google Scholar 

  • Krivosheina NP (1969) Ontogeny and evolution of dipterous insects. Nauka, Moscow, p 282

    Google Scholar 

  • Kutty SN, Pont AC, Meier R, Pape T (2014) Complete tribal sampling reveals basal split in Muscidae (Diptera), confirms saprophagy as ancestral feeding mode, and reveals an evolutionary correlation between instar numbers and carnivory. Mol Phylogenet Evol 78:349–364

    Article  PubMed  Google Scholar 

  • Lahiri S, Shen K, Klein M, Tang A, Kane E, Gershow M, Garrity P, Samuel ADT (2011) Two alternating motor programs drive navigation in Drosophila larva. PLoS One 6:e23180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambkin C, Sinclair BJ, Pape T, Courtney GW, Skevington JH, Meier R, Yeates DK, Blagoderov V, Wiegmann BM (2013) The phylogenetic relationships among infraorders and superfamilies of Diptera based on morphological evidence. Syst Entomol 38:164–179

    Article  Google Scholar 

  • Ludwig CE (1949) Embryology and morphology of the larval head of Calliphora erythrocephala Meigen. Microentomology 14:75–111

    Google Scholar 

  • Martinek V (1977) Species of Genus Palloptera Fallén, 1820 (Dipt., Pallopteridae) in Czechoslovakia. Stud Entomol Forestalia 12:203–220

    Google Scholar 

  • McAlpine JF (1989) Phylogeny and classification of the Muscomorpha. In: McAlpine JF, Wood DM (eds) Manual Nearctic Diptera 3:1397–1502. Monograph No. 32, Research Branch, Agriculture Canada

    Google Scholar 

  • Meier R (1995) Cladistic analysis of the Sepsidae (Cyclorrhapha: Diptera) based on a comparative scanning electron microscopic study of larvae. Syst Entomol 20:99–128

    Article  Google Scholar 

  • Meier R, Lim GS (2009) Conflict, convergent evolution, and the relative importance of immature and adult characters in endopterygote phylogenetics. Annu Rev Entomol 54:85–104

    Article  CAS  PubMed  Google Scholar 

  • Mengual X, Stahls G, Rojo S (2008) First phylogeny of predatory flower flies using mitochondrial CO1 and nuclear 28S rRNA genes: conflict and congruence with the current tribal classification. Cladistics 24:543–562

    Article  PubMed  Google Scholar 

  • Misof B et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  PubMed  Google Scholar 

  • Narchuk EP (1985) Adaptions of cyclorrhaphan larvae (Diptera) for the inhabitation of living plants. In: Skarlato OA (ed) Systematics of Diptera (Insecta): ecological and morphological principles. Oxonian Press, New Delhi, pp 97–101

    Google Scholar 

  • Neugart C, Schneeberg K, Beutel RG (2009) The morphology of the larval head of Tipulidae (Diptera, Insecta) – the dipteran groundplan and evolutionary trends. Zool Anz 248:213–235

    Article  Google Scholar 

  • Parmenter L (1951) Notes on the distribution of Pallopteridae in Britain. Ent Rec J Var 63:304–306

    Google Scholar 

  • Pérez-Bañón C, Marcos-García M-A (1998) Life history and description of the immature stages of Eumerus purpurariae (Díptera: Syrphidae) developing in Opuntia maxima. Eur J Entomol 95:373–382

    Google Scholar 

  • Persson PI (1963) Studies on the biology and larval morphology of some Trypetidae (Dipt.). Opusc Ent 28:33–69

    Google Scholar 

  • Ricarte A, Marcos-García MA, Rotheray GE (2008) The early stages and life histories of three Eumerus and two Merodon species (Diptera: Syrphidae) from the Mediterranean region. Ent Fenn 19:129–141

    Google Scholar 

  • Roberts MJ (1969) Structure of the mouthparts of the larvae of the flies Rhagio and Sargus in relation to feeding habits. J Zool Lond 159:381–398

    Article  Google Scholar 

  • Roháček J (2009) A monograph of Palaearctic Anthomyzidae (Diptera), Part 2. Čas Slezsk zem Muzea, Opava (A) 58 (Suppl 1):1–180

    Google Scholar 

  • Rohdendorf BB (1974) The historical development of Diptera. University of Alberta Press, Edmonton, AB

    Google Scholar 

  • Rotheray GE (1986) Colour, shape and defence in aphidophagous syrphid larvae (Diptera). Zool J Linn Soc 88:201–216

    Article  Google Scholar 

  • Rotheray GE (1988) Morphology and feeding behaviour of the leaf-mining larva of Cheilosia semifasciata (Diptera: Syrphidae). J Nat Hist 22:865–873

    Article  Google Scholar 

  • Rotheray GE (1993) Colour guide to hoverfly larvae (Diptera, Syrphidae). Dipter Digest 9:1–156

    Google Scholar 

  • Rotheray GE (1999a) The early stages of Cheilosia illustrata (Harris) (Diptera, Syrphidae). Dipter Digest 6:107–111

    Google Scholar 

  • Rotheray GE (1999b) Descriptions and a key to the larval and puparial stages of north-west European Volucella (Diptera, Syrphidae). Studia Dipterol 6:103–116

    Google Scholar 

  • Rotheray GE (2014) Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900:50–76

    Article  PubMed  Google Scholar 

  • Rotheray GE (2016) Improving knowledge of the cyclorrhaphan larva (Diptera). J Nat Hist 50:2169–2198

    Article  Google Scholar 

  • Rotheray GE, Gilbert FS (1989) The phylogeny and systematics of European predacious Syrphidae (Diptera) based on larval and puparial stages. Zool J Linn Soc 95:29–70

    Article  Google Scholar 

  • Rotheray GE, Gilbert F (1999) Phylogeny of Palaearctic Syrphidae (Diptera): evidence from larval stages. Zool J Linn Soc 127:1–112

    Article  Google Scholar 

  • Rotheray GE, Gilbert F (2008) Phylogenetic relationships and the larval head of the lower Cyclorrhapha (Diptera). Zool J Linn Soc 153:287–323

    Article  Google Scholar 

  • Rotheray GE, Hewitt S (2015) Development site, feeding mode and early stages of Palloptera scutellata (Macquart) (Diptera, Pallopteridae). Dipter Digest 22:157–170

    Google Scholar 

  • Rotheray GE, Horsfield D (2013) Development sites and early stages of eleven species of Clusiidae (Diptera) occurring in Europe. Zootaxa 3619:401–427

    Article  PubMed  Google Scholar 

  • Rotheray GE, Lyszkowski R (2015) Diverse mechanisms of feeding and movement in Cyclorrhaphan larvae (Diptera). J Nat Hist 49:2139–2211

    Article  Google Scholar 

  • Rotheray GE, Marcos-Garcia M-A, Hancock EG, Gilbert F (2000) The systematic position of Alipumilio and Nausigaster based on early stages (Diptera, Syrphidae). Studia Dipterol 7:133–144

    Google Scholar 

  • Rotheray GE, Hancock EG, Marcos-Garcia M (2007) Neotropical Copestylum (Diptera, Syrphidae) breeding in bromeliads (Bromeliaceae) including 22 new species. Zool J Linn Soc 150:267–317

    Article  Google Scholar 

  • Rotheray GE, Marcos-Garcia M, Hancock G, Pérez-Bañón C, Maier CT (2009) Neotropical Copestylum (Diptera, Syrphidae) breeding in Agavaceae and Cactaceae including seven new species. Zool J Linn Soc 156:697–749

    Article  Google Scholar 

  • Rotheray GE, Bland KP, Hancock G (2014) Paranthomyza nitida (Diptera: Anthomyzidae): life history in Scotland. Entomol Mon Mag 150:7–18

    Google Scholar 

  • Rupp L (1989) Die mitteleuropäische Arten der Gattung Volucella (Diptera, Syrphidae) als Kommensalen und Parasitoide in den Nestern von Hummeln und sozialen Wespen: Untersuchungen zur Wirtsfindung, Larvalbiologie und Mimikry. Unpublished PhD Thesis, Albert Ludwigs Universität, Freiburg, Germany

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schremmer F (1956) Funktionsmophologische Srudien an Diprerenlarven. Verh Dt Zool Ges 1956:301–305

    Google Scholar 

  • Séguy E (1934) Anthomyzidae. In: Diptères (brachycères) (Muscidae Acalyptratae et Scatophagidae). Faune de France 28:301–305

    Google Scholar 

  • Semelbauer M, Kozánek M (2012) Morphology of preimaginal stages of Lauxania and Calliopum (Diptera: Lauxaniidae). Zootaxa 3346:1–28

    Article  Google Scholar 

  • Sinclair BJ (1992) A phylogenetic interpretation of the Brachycera (Diptera) based on the larval mandible and associated mouthpart structures. Syst Entomol 17:233–252

    Article  Google Scholar 

  • Sinclair BJ, Cumming JM (2006) The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera). Zootaxa 1180(1):172

    Article  Google Scholar 

  • Smith KVG (1989) An introduction to the immature stages of British flies. Handbk Ident Br Insects 10:1–280

    CAS  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snodgrass RE (1953) The metamorphosis of a fly’s head. Smithsonian Misc Colls 122:1–25

    Google Scholar 

  • Stubbs AE, Drake M (2001) British soldierflies and their allies. British Entomological & Natural History Society, Reading

    Google Scholar 

  • Stuke J-H (2000) Phylogenetische rekonstruktion der verwandtschaftsbeziehungen innerhalb der gattung Cheilosia Meigen, 1822 anhand der larvenstadien (Diptera: Syrphidae). Stud Dipterol Suppl 8:1–118

    Google Scholar 

  • Teskey HJ (1981) Morphology and terminology – Larvae. In: McAlpine J, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual Nearctic Diptera 1:65–88

    Google Scholar 

  • Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57:449–468

    Article  CAS  PubMed  Google Scholar 

  • Vijendravarma RK, Narasimha S, Kawecki1 TJ (2013) Predatory cannibalism in Drosophila melanogaster larvae. Nat Commun 4:1789 doi: https://doi.org/10.1038/ncomms2744

  • Wang JW, Sylwester AW, Reed D, Wu D-A, Soll DR, Wu X-F (1997) Morphometric description of the wandering behavior in Drosophila larvae: aberrant locomotion in Na+ and K+ channel mutants revealed by computer-assisted motion analysis. J Neurogen 11:231–254

    Article  CAS  Google Scholar 

  • Wheeler QD (2008) Undisciplined thinking: morphology and Hennig’s unfinished revolution. Syst Entomol 33:2–7

    Article  Google Scholar 

  • Wiegmann BM, Trautwein MD, Winkler IS, Barra NB, Kima J-W, Lambkin C, Berton MA, Cassela BK, Bayless KM, Heimberg AM, Wheeler BM, Petersone KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravask J, Narayanan Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GM, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Nat Acad Sci 108:5690–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Wilkinson G, Rotheray GE (2017) Melanostoma scalare (Meigen) larvae (Diptera, Syrphidae) feed on Diptera larvae in leaf litter. Dipter Digest 24:53–60

    Google Scholar 

  • Wipfler B, Schneeberg K, Löffler A, Hünefeld F, Meier R, Beutel RG (2013) The skeletomuscular system of the larva of Drosophila melanogaster (Drosophilidae, Diptera) – a contribution to the morphology of a model organism. Arthrop Struct Dev 42:47–68

    Article  Google Scholar 

  • Yang AS (2001) Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol Develop 3:59–72

    Article  CAS  Google Scholar 

  • Yeates DK, Wiegmann BM, Courtney GW, Meier R, Lambkin C, Pape T (2007) Phylogeny and systematics of Diptera: two decades of progress and prospects. Zootaxa 1668:565–590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rotheray, G.E. (2019). The Cyclorrhaphan Larva as a Data Source. In: Ecomorphology of Cyclorrhaphan Larvae (Diptera). Zoological Monographs, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-92546-2_9

Download citation

Publish with us

Policies and ethics