Skip to main content

Automatic Inference of Cross-Modal Connection Topologies for X-CNNs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Abstract

This paper introduces a way to learn cross-modal convolutional neural network (X-CNN) architectures from a base convolutional network (CNN) and the training data to reduce the design cost and enable applying cross-modal networks in sparse data environments. Two approaches for building X-CNNs are presented. The base approach learns the topology in a data-driven manner, by using measurements performed on the base CNN and supplied data. The iterative approach performs further optimisation of the topology through a combined learning procedure, simultaneously learning the topology and training the network. The approaches were evaluated agains examples of hand-designed X-CNNs and their base variants, showing superior performance and, in some cases, gaining an additional 9% of accuracy. From further considerations, we conclude that the presented methodology takes less time than any manual approach would, whilst also significantly reducing the design complexity. The application of the methods is fully automated and implemented in Xsertion library (Code is publicly available at https://github.com/karazijal/xsertion).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A linear classifier is trained using outputs of frozen intermediate layers as inputs, measuring generalisation performance.

  2. 2.

    For example, it is known that nearly always the initial convolutional layers in CNNs learn to be edge extractors [22].

  3. 3.

    This should not be confused with parameters of the layers themselves, in other literature sometimes referred to as weights as well.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  3. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  4. Veličković, P., Wang, D., Laney, N.D., Liò, P.: X-CNN: cross-modal convolutional neural networks for sparse datasets. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  5. Velickovic, P., Karazija, L., Lane, N.D., Bhattacharya, S., Liberis, E., Lio, P., Chieh, A., Bellahsen, O., Vegreville, M.: Cross-modal recurrent models for weight objective prediction from multimodal time-series data. arXiv e-prints (2017)

    Google Scholar 

  6. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  7. Yao, X., Liu, Y.: EPNet for chaotic time-series prediction. In: Yao, X., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1996. LNCS, vol. 1285, pp. 146–156. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028531

    Chapter  Google Scholar 

  8. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. IEEE Trans. Evol. Comput. 9(6), 653–668 (2005)

    Article  Google Scholar 

  9. Zhang, B.T., Ohm, P., Mühlenbein, H.: Evolutionary induction of sparse neural trees. Evol. Comput. 5(2), 213–236 (1997)

    Article  Google Scholar 

  10. Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series forecasting using flexible neural tree model. Inf. Sci. 174(3), 219–235 (2005)

    Article  MathSciNet  Google Scholar 

  11. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient transfer learning. CoRR abs/1611.06440 (2016)

    Google Scholar 

  12. Hu, H., Peng, R., Tai, Y., Tang, C.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. CoRR abs/1607.03250 (2016)

    Google Scholar 

  13. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)

    Google Scholar 

  14. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. CoRR abs/1707.07012 (2017)

    Google Scholar 

  15. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. CoRR abs/1703.01041 (2017)

    Google Scholar 

  16. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. CoRR abs/1611.02167 (2016)

    Google Scholar 

  17. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. CoRR abs/1412.6550 (2014)

    Google Scholar 

  18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. CoRR abs/1505.00387 (2015)

    Google Scholar 

  21. Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. arXiv preprint arXiv:1610.01644 (2016)

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  24. Dozat, T.: Incorporating nesterov momentum into adam (2016). http://cs229.stanford.edu/proj2015/054_report.pdf

  25. Chollet, F., et al.: Train a simple deep CNN on the CIFAR10 small images dataset (2015). https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

  26. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009). https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

  27. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures. CoRR abs/1603.08029 (2016)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurynas Karazija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karazija, L., Veličković, P., Liò, P. (2018). Automatic Inference of Cross-Modal Connection Topologies for X-CNNs. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics