Skip to main content

An Efficient Extreme Learning Machine for Robust Regression

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

  • 3827 Accesses

Abstract

In this paper, we intend to build a robust extreme learning machine (RELM) with the advantage of both Bayesian framework and Huber loss function. The new method inherits the basic idea of training ELM in a Bayesian framework and replacing the original quadratic loss function by Huber loss function when estimating output weights, in order to enhance the robustness of model. However, the introduction of Huber loss function also yields the prior distribution of model output no longer Gaussian, which makes it difficult to estimate model parameters by using Bayesian method directly. To solve this problem, the iteratively re-weighted least squares (IRWLS) is employed and the Huber cost function can be equivalently transformed into the form of quadratic loss function, which results in an efficient Bayesian method for parameter estimation and remains robust to outliers. We demonstrate with experimental results that the proposed method can effectively increase the robustness of model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing. 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  2. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)

    Article  Google Scholar 

  3. Rong, H.J., Ong, Y.S., Tan, A.H., Zhu, Z.: A fast pruned-extreme learning machine for classification problem. Neurocomputing. 72(1–3), 359–366 (2008)

    Article  Google Scholar 

  4. Wang, G.R., Zhao, Y., Wang, D.: A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 72(1–3), 262–268 (2008)

    Article  Google Scholar 

  5. Sun, Z.L., Au, K.F., Choi, T.M.: A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(5), 1321–1331 (2007)

    Article  Google Scholar 

  6. Rong, H.J., Huang, G.B., Sundararajan, N.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(4), 1067–1072 (2009)

    Article  Google Scholar 

  7. Nizar, A.H., Dong, Z.Y., Wang, Y.: Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans. Power Syst. 23(3), 946–955 (2008)

    Article  Google Scholar 

  8. Tang, X.L., Han, M.: Partial Lanczos extreme learning machine for single-output regression problems. Neurocomputing. 72, 3066–3076 (2009)

    Article  Google Scholar 

  9. Hansen, P.C.: The truncated SVD as a method for regularization. BIT Numer. Math. 27(4), 534–553 (1987)

    Article  MathSciNet  Google Scholar 

  10. Colinas, J., Goussard, Y., Laurin, J.J.: Application of the Tikhonov regularization technique to the equivalent magnetic currents near-field technique. IEEE Trans. Antennas Propag. 52(11), 3122–3132 (2004)

    Article  Google Scholar 

  11. Gao, J.B., Zhang, J., Tien, D.: Relevance units latent variable model and nonlinear dimensionality reduction. IEEE Trans Neural Netw. 21(1), 123–135 (2010)

    Article  Google Scholar 

  12. Cawley, G.C., Talbot, N.L.C., Janacek, G.J., Peck, M.W.: Sparse Bayesian kernel survival analysis for modeling the growth domain of microbial pathogens. IEEE Trans. Neural Netw. 17(2), 471–481 (2006)

    Article  Google Scholar 

  13. Olivas, E.S., Sanchis, J.G., Martin, J.D., Martínez, M., Magdalena, J.R., Serrano, A.J.: BELM: Bayesian extreme learning machine. IEEE Trans. Neural Netw. 22(3), 505–509 (2011)

    Article  Google Scholar 

  14. Tipping, M.E., Lawrence, N.D.: Variational inference for Student-t models robust Bayesian interpolation and generalised component analysis. Neurocomputing. 69, 123–141 (2005)

    Article  Google Scholar 

  15. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007)

    MATH  Google Scholar 

  16. Hong, X., Chen, S.: M-estimator and D-optimality model construction using orthogonal forward regression. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 35(1), 155–162 (2005)

    Article  Google Scholar 

  17. Chuan, C.C., Lee, Z.J.: Hybrid robust support vector machines for regression with outliers. Appl. Soft Comput. 11, 64–72 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., He, Y. (2018). An Efficient Extreme Learning Machine for Robust Regression. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics