Skip to main content

Pulse Neuron Supervised Learning Rules for Adapting the Dynamics of Synaptic Connections

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

Abstract

In this study, we propose a discrete time vector-matrix model of a pulse neuron and novel supervised learning rules. We assumed that the synaptic connections of the neuron model are characterized by linear dynamic behavior. A distinctive feature of the considered approach is that for the training of the neuron model we do not adjust the synaptic weights, instead we adapt the impulse responses of the synaptic connections.

We propose two types of supervised learning rules. They are driven by the values of the total postsynaptic potential or by the time moments when the output pulses are emitted. The quantitative changes in the values of the impulse responses are proportional to the values of the matrix of binary vectors that fix the recent time history of input pulse trains. We demonstrate the properties of rules by computer simulation of pulsed neural networks that mimic linear dynamic reference systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  2. Grüning, A., Bohte, S.M.: Spiking neural networks: principles and challenges. In: Proceedings of 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014), Bruges (Belgium), 23–25 April 2014. Louvain-La-Neuve (2014). i6doc.com

  3. Ponulak, F., Kasiński, A.: Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol. Exp. 71, 409–433 (2011)

    Google Scholar 

  4. Abbott, L.F., DePasquale, B., Memmesheimer, R.-M.: Building functional networks of spiking model neurons. Nat. Neurosci. 19(3), 350–355 (2016)

    Article  Google Scholar 

  5. Memmesheimer, R.-M., Rubin, R., Ölveczky, B.P., Sompolinsky, H.: Learning precisely timed spikes. Neuron 82(4), 925–938 (2014). https://doi.org/10.1016/j.neuron.2014.03.026

    Article  Google Scholar 

  6. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010). https://doi.org/10.1162/neco.2009.11-08-901

    Article  MathSciNet  MATH  Google Scholar 

  7. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: SPAN: spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(4), 1–17 (2012). https://doi.org/10.1142/S0129065712500128

    Article  Google Scholar 

  8. Yu, Q., Tang, H., Tan, K.C., Li, H.: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS ONE 8(11), 1–16 (2013). https://doi.org/10.1371/journal.pone.0078318

    Article  Google Scholar 

  9. Gardner, B., Grüning, A.: Supervised learning in spiking neural networks for precise temporal encoding. PLoS ONE 11(8), 1–28 (2016). https://doi.org/10.1371/journal.pone.0161335

    Article  Google Scholar 

  10. Bondarev, V.: Vector-matrix models of pulse neuron for digital signal processing. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 647–656. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_74

    Chapter  Google Scholar 

  11. Bondarev, V.: Pulse neuron learning rules for processing of dynamical variables encoded by pulse trains. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V. (eds.) NEUROINFORMATICS 2017. SCI, vol. 736, pp. 53–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66604-4_8

    Chapter  Google Scholar 

  12. Maass, W., Markram, H.: Synapses as dynamic memory buffers. Neural Netw. 15, 155–161 (2002)

    Article  Google Scholar 

  13. Rusu, C.V., Florian, R.V.: A new class of metrics for spike trains. Neural Comput. 26(2), 306–348 (2014). https://doi.org/10.1162/NECO_a_00545

    Article  MathSciNet  Google Scholar 

  14. Bondarev, V.N., Smetanina, T.I.: Digital pulse neuron model for processing of wave accelerometer sensor signals. Sistemy Kontrolya Okruzhayuschey Sredy. 8(28), 16–23 (2017). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bondarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bondarev, V. (2018). Pulse Neuron Supervised Learning Rules for Adapting the Dynamics of Synaptic Connections. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics