Skip to main content

Economic and Academic Importance of Barley

  • Chapter
  • First Online:
The Barley Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Barley has had an interesting history. It is thought to be the first crop domesticated and developed as the staple food for the earliest farmers. It has remained an important food in many regions but its main uses now are as an animal feed and for beer production. While production for the other major cereal crops, maize, rice and wheat, has continued to grow, barley production has stagnated over the past two decades. Nevertheless, over the last century, barley has been an important crop model for a wide range of studies on genetics, biochemistry and developmental biology, particularly for barley’s close relative, wheat. Many key concepts and tools in modern crop research can be traced back to early studies on barley. As techniques for genetic and genome analysis improve, and genomic research in wheat becomes more tractable, the role of barley as a model is likely to shift. However, there are several aspects of barley that are likely to keep it as an important crop for study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Allaby RG (2015) Barley domestication: the end of a central dogma? Genome Biol 16:176–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Allard RW (1999) History of plant population genetics. Annu Rev Genet 33:1–27

    Article  CAS  PubMed  Google Scholar 

  • Baik B-K, Ullrich SE (2008) Barley for food: characteristics, improvement and renewed interest. J Cereal Sci 48:233–242

    Article  CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape J, Laurie D (2007) A pseudo-response regulator is missexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Betts NS, Berkowitz O, Liu RJ, Collins HM, Skadhauge B, Dockter C, Burton RA, Whelan J, Fincher GB (2017) Isolation of tissues and preservation of RNA from intact, germinated barley grain. Plant J 91:754–765

    Article  CAS  PubMed  Google Scholar 

  • BĂĽschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Chandler PM, Zwar JA, Jacobsen JV, Higgins TJ, Inglis AS (1984) The effects of gibberellic acid and abscisic acid on α-amylase mRNA levels in barley aleurone layers studies using an α-amylase cDNA clone. Plant Mol Biol 3:407–418

    Article  CAS  PubMed  Google Scholar 

  • Chrispeels MJ, Varner J (1967) Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol 42:398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Dawson IK, Russell J, Powell W, Steffensen B, Thomas WTB, Waugh R (2015) Barley: a translational model for adaption to climate change. New Phytol 206:913–931

    Article  PubMed  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  CAS  PubMed  Google Scholar 

  • FAO (2016) Food outlook: biannual report on global food markets. ISSN 1560-8182, http://www.fao.org/3/a-i5703e.pdf

  • FAOSTAT (2017) http://www.fao.org/faostat/en/#data

  • Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Aust J Agric Res 54:1081–1101

    Article  CAS  Google Scholar 

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  CAS  PubMed  Google Scholar 

  • GĂłmez-Cadenas A, Zentella R, Walker-Simmons MK, Ho T-HD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubatz S, Dercksen VJ, Bruess C, Weschke W, Wobus U (2007) Analysis of barley (Hordeum vulgare) grain development using three-dimensional digital models. Plant J 52:779–790

    Article  CAS  PubMed  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobsen JV, Varner J (1967) Gibberellic acid-induced synthesis of protease by isolated aleurone layers of barley. Plant Physiol 42:1596–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadziola A, Abe J, Svensson B, Haser R (1994) Crystal and molecular structure of barley α-amylase. J Mol Biol 239:104–121

    Article  CAS  PubMed  Google Scholar 

  • KnĂĽpfer R (2009) Triticeae genetic resources in ex situ genebank collections. In Muehlbauer GJ, Feuillet C (eds) Genetic and genomics of the triticeae. Plant genetics and genomics: crops and models, vol 7. Springer Science, New York, USA, pp 31–80

    Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusch S, Panstruga R (2017) Mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. MPMI 30:179–189

    Article  CAS  PubMed  Google Scholar 

  • Lanahan MB, Ho T, Rogers SW, Rogers JC (1992) A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell 4:203–211

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lundqvist U (2014) Scandinavian mutation research in barley—a historical review. Hereditas 151:123–131

    Article  PubMed  Google Scholar 

  • McCouch S, Baute GP, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Sackville Hamilton R, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Agriculture: feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman RK, Newman CW (1991) Barley as a food grain. Cereal Foods World 36:800–805

    Google Scholar 

  • Newman CW, Newman RK (2006) A brief history of barley foods. Cereal Foods World 51:4–7

    Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539

    Article  CAS  PubMed  Google Scholar 

  • Riehl S, Zeidi M, Conard NJ (2013) Emergence of agriculture in the foothills of the Zagros mountains of Iran. Science 341:65–67

    Article  CAS  PubMed  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium (IBSC)—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Hawkesford MJ, Piironen V, Lampi A-M, Gebruers K, Boros D, Andersson AAM, Aman P, Rakszegi M, Bedo Z (2013) Natural variation in grain composition of wheat and related cereals. J Agric Food Chem 61:8295–8303

    Article  CAS  PubMed  Google Scholar 

  • Skadhauge B, Lok F, Breddam K, Olsen O, Bech M, Knudsen S (2011) Barley with reduced lipoxygenase activity and beverage prepared therefrom. US Patent 0318469A1

    Google Scholar 

  • Slakeski N, Fincher GB (1992) Developmental regulation of (1 → 3, 1 → 4)-β-glucanase gene expression in barley tissue-specific expression of individual isoenzymes. Plant Physiol 99:1226–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford R, Laurie D (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Varghese JN, Garrett TPJ, Colman PM, Chen L, Høj P, Fincher GB (1994) The three-dimensional structures of two plant β-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci USA 91:2785–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250:183–191

    Article  CAS  Google Scholar 

  • Wendler N, Mascher M, Noh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next generations sequencing. Plant Biotechnol J 12:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • You L, Wood-Sichra U, Fritz S, Guo Z, See L, Koo J (2014) Spatial production allocation model (SPAM) 2005 v2.0., 10 Jan 2017. Available from http://mapspam.info

  • Zhang RX, Tucker MR, Burton RA, Shirley NJ, Little A, Morris J, Milne L, Houston K, Hedley P, Waugh R, Fincher GB (2016) The dynamics of transcript abundance during cellularization of developing barley endosperm. Plant Physiol 170:1549–1565

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zohary D, Hopf M (1988) Domestication of plants in the old world. Clarendon Press, Oxford, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Langridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langridge, P. (2018). Economic and Academic Importance of Barley. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_1

Download citation

Publish with us

Policies and ethics