Skip to main content

The Cochlea

  • Chapter
  • First Online:

Abstract

The mammalian cochlea is an intricately designed organ that is exquisitely sensitive to sound. It possesses unique physical and chemical properties that permit this organ to function properly. This chapter describes some of the features of the cochlea including the cells that line the fluid filled spaces of the cochlear duct and the chemical composition of the fluids that allow the tissues to produce resting and acting potentials that assist in the transduction of acoustic stimuli into electrical signals to the brain. The structure of key structures in the cochlea are illustrated with light microscopy and ultrastructural images, including transmission and scanning electron microscopy. The unusual structural and functional features of these cells allow them to function in an orderly and precise fashion to shape the special sensory function of hearing in the normal cochlea of mammals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi N, Yoshida T, Nin F, Ogata G, Yamaguchi S, Suzuki T, Komune S, Hisa Y, Hibino H, Kurachi Y. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear. J Physiol. 2013;591:4459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade LR, Salles FT, Grati M, Manor U, Kachar B. Tectorins crosslink type II collagen fibrils and connect the tectorial membrane to the spiral limbus. J Struct Biol. 2016;194:139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Said M, Grati M, Ishimoto T, Zou B, Chakchouk I, Ma Q, Yao Q, Hammami B, Yan D, Mittal R, Nakamichi N, Ghorbel A, Neng L, Tekin M, Shi XR, Kato Y, Masmoudi S, Lu Z, Hmani M, Liu XL. A mutation in SLC22A4 encoding an organic cation transporter expressed in the cochlea strial endothelium causes human recessive non-syndromic hearing loss DFNB60. Hum Genet. 2016;135:513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohne BA, Harding GW. Cochlear anatomy. In: Clark WW, Ohlemiller KK, editors. Anatomy and physiology of hearing for audiologists. Clifton Park: Thomson Delmar Learning; 2008. p. 109–22.

    Google Scholar 

  • Cazals Y, Bevengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun. 2015;6:8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, Li H, Lin X. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med. 2015;7:1077–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarella G, Petrolo C, Cassandro E. The genetics of Meniere’s disease. Appl Clin Genet. 2015;8:9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WH, Sengupta S, He DZ, Zuo J. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron. 2008;58:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fettiplace R. Is TMC1 the hair cell mechanotransducer channel? Biophys J. 2016;111:3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fettiplace R. Hair cell transduction, tuning and synaptic transmission in the mammalian cochlea. Compr Physiol. 2017;7:1197–227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Neurosci. 2006;7:19–29.

    Article  CAS  Google Scholar 

  • Forge A, Becker D, Casalotti S, Edwards J, Evans WH, Lench N, Souter M. Gap junctions and connexin expression in the inner ear. Novartis Found Symp. 1999;219:134–50.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Glowatzki E, Moser T. The afferent synapse of cochlear hair cells. Curr Opin Neurobiol. 2003;13:452–8.

    Article  CAS  PubMed  Google Scholar 

  • Giese APJ, Tang Y-Q, Sinha GP, Bowl MR, Goldring AC, Parker A, Freeman MJ, Brown SDM, Riazuddin S, Fettiplace R, Schafer WR, Frolenkov GI, Ahmed Z. CiB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nat Commun. 2017;8(1):43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goutman JD, Elgoyhen AB, Gomez-Casati ME. Cochlear hair cells: the sound-sensing machines. FEBS Lett. 2015;589:3354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci. 2004;24:7051–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino H, Nin F, Tsuzuki C, Kurachi Y. The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch - Eur J Physiol. 2010;459:521–33.

    Article  CAS  Google Scholar 

  • Hudspeth AJ. How the ear’s works work. Nature. 1989;341:397–404.

    Article  CAS  PubMed  Google Scholar 

  • Jagger DJ, Forge A. The enigmatic root cell—emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hear Res. 2013;303:1–11.

    Article  PubMed  Google Scholar 

  • Kim HJ, Gratton MA, Lee J-H, Perez Flores MC, Wang W, Doyle KJ, Beermann F, Crognale MA, Yamoah EN. Precise toxigenic ablation of intermediate cells abolishes the “battery” of the cochlear duct. J Neurosci. 2013;33:14601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Leutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell. 1999;96:437–46.

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol. 2007;293:C1187–208.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li Y, Chen L, Zhang Q, Pan N, Nichols DH, Zhang WJ, Fritsch B, He DZZ. Organ of Corti and stria vascularis: is there an interdependence for Survival? PLoS One. 2016;11(12):w0168953. https://doi.org/10.1371/journal.pone.0168953.

    Article  CAS  Google Scholar 

  • Liu W, Schrott-Fischer A, Glueckert R, Benav H, Rask-Andersen H. The human “cochlear battery” –claudin-11 barrier and ion transport proteins in the lateral wall of the cochlea. Front Mol Neurosci. 2017;10:239. https://doi.org/10.3389/fnmol.2017.00239.

  • Milewski AR, Maoileidigh DO, Salvi JD, Hudspeth AJ. Homeostatic enhancement of sensory transduction. Proc Natl Acad Sci U S A. 2017;114:E6794–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal R, Aranke M, Debs LH, Nguyen D, Patel AP, Grata M, Mittal J, Yan D, Chapagain P, Eshraghi AA, Liu XZ. Indispensable role of ion channels and transporters in the auditory system. J Cell Physiol. 2017;232:743–58.

    Article  CAS  PubMed  Google Scholar 

  • Molina L, Fasquelle L, Nouvian R, Salvetat N, Scott HS, Guipponi M, Molina F, Puel JL, Delprat B. Tmprss3 loss of function impairs cochlear inner hair cell Kcnma1 channel membrane expression. Hum Mol Genet. 2013;22:1289–99.

    Article  CAS  PubMed  Google Scholar 

  • Nam J-H, Fettiplace R. Optimal electrical properties of outer hair cells ensure cochlear amplification. PLoS One. 2012;7(11):e50572. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nin F, Yoshida T, Sawamura S, Ogata G, Ota T, Higuchi T, Murakami S, Doi K, Kurachi Y, Hibino H. The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance. Pflugers Arch - Eur J Physiol. 2016;468:1637–49.

    Article  CAS  Google Scholar 

  • Raphael Y, Altschuler RA. Structure and innervation of the cochlea. Brain Res Bull. 2003;60:397–422.

    Article  Google Scholar 

  • Ren T, He W, Kemp D. Reticular lamina and basilar membrane vibrations in living mouse cochleae. Proc Natl Acad Sci U S A. 2016;113:9910–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaechinger TJ, Gorbunov D, Halaszovich CR, Moser T, Kugler S, Fakler B, Oliver D. A synthetic prestin reveals prestin protein domains and molecular operation of outer hair cell piezoelectricity. EMBO J. 2011;30:2793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan MT, Alagramam KN, Megerian CA. The basic science of Meniere’s disease and endolymphatic hydrops. Curr Opin Otolaryngol Head Neck Surg. 2005;13:301–7.

    Article  PubMed  Google Scholar 

  • Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res. 2016;338:52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shodo R, Hayatsu M, Koga D, Horii A, Ushiki T. Three-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy. Biomed Res (Tokyo). 2017;38(4):239–48.

    Article  CAS  Google Scholar 

  • Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res. 1996; 100(1–2):80–100.

    Article  CAS  PubMed  Google Scholar 

  • Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 1989;107:453–63.

    PubMed  CAS  Google Scholar 

  • Sterkers O, Ferrary E, Amiel C. Production of inner ear fluids. Physiol Rev. 1988;68:1083–128.

    Article  CAS  PubMed  Google Scholar 

  • Stöver T, Diensthuber M. Molecular biology of hearing. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011;10:Doc06. https://doi.org/10.3205/cto000079. Epub 2012 Apr 26.

  • Verpy E, Leibovici M, Michalski N, Goodyear RJ, Houdon C, Weil D, Richardson GP, Petit C. Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol. 2011;519:194–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Bekesy G. Resting potentials inside the cochlear partition of the guinea pig. Nature. 1952;169:241–2.

    Article  Google Scholar 

  • Wu Z, Grillet N, Zhao B, Cunningham C, Harkins-Perry S, Coste B, Ranade S, Zebarjadi N, Beurg M, Fettiplace R, Patapoutian A, Mueller U. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat Neurosci. 2017;20:24–33.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dai M, Wilson TM, Omelchenko I, Klimek JE, Wilmarth PA, David LL, Nuttall AL, Gillespie PG, Shi X. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. PLoS One. 2011;6(1):e16547. https://doi.org/10.1371/journal.pone.0016547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo JC, Kim HY, Han KH, Oh SH, Chang SO, Marcus DC, Lee JH. Na+ absorption by Claudius’ cells is regulated by purinergic signaling in the cochlea. Acta Otolaryngol. 2012;132(Suppl 1):S103–8.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Nin F, Murakami S, Ogata G, Uetsuka S, Choi S, Nakagawa T, Inohara H, Komune S, Kurachi Y, Hibino H. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential. Pflugers Arch. 2016;468:1609–19.

    Article  CAS  PubMed  Google Scholar 

  • Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, Liu XZ, Nouaille S, Nance WE, Kanaan M, Avraham KB, Tekaia F, Loiselet J, Lathrop M, Richardson G, Petit C. Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc Natl Acad Sci U S A. 2002;99:6240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Dr. Rybak was supported by NIH grant DC02396 from NIDCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard P. Rybak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rybak, L.P. (2018). The Cochlea. In: Ramkumar, V., Rybak, L. (eds) Inflammatory Mechanisms in Mediating Hearing Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-92507-3_1

Download citation

Publish with us

Policies and ethics