Skip to main content

Rodent Vocalizations: Adaptations to Physical, Social, and Sexual Factors

  • Chapter
  • First Online:
Rodent Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 67))

Abstract

This chapter introduces representative studies in acoustic communication in rodents. By using rodents as a model in which to study the evolution of vocal communication, researchers are able to utilize their diversity in physical habitats, social complexity, and sexual rituals. The widespread use of rodents as subjects of acoustic communication research is largely because many such species are the most successful mammalian group in terms of speciation. Much attention has been paid to isolation calls, alarm calls, and contact (or signature) calls in several species of rodents, with emphasis on the physical, social, and sexual variables involved in their production. Emergence of song-like vocalizations in both mother-infant contexts and male-female mating contexts are also discussed. Furthermore, the chapter focuses on the degree of plasticity in perception, production, and usage of these vocalizations in relation to the organization of neural structures related to hearing and vocalizations in rodents. Finally, these observations are integrated to suggest a general hypothesis on the evolution of vocal communication in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.

    Article  PubMed  Google Scholar 

  • Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One, 7(10), e46610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barfield, R. J., Auerbach, P, Geyer, L. A., & McIntosh, T. K. (1979). Ultrasonic vocalizations in rat sexual behavior. American Zoologist, 19(2), 469–480.

    Article  Google Scholar 

  • Barfield, R. J., & Geyer, L. A. (1972). Sexual behavior: Ultrasonic postejaculatory song of the male rat. Science, 176(4041), 1349–1350.

    Article  PubMed  CAS  Google Scholar 

  • Bednářová, R., Hrouzková-Knotková, E., Burda, H., Sedláček, F., & Šumbera, R. (2013). Vocalizations of the giant mole-rat (Fukomys mechowii), a subterranean rodent with the richest vocal repertoire. Bioacoustics, 22(2), 87–107.

    Article  Google Scholar 

  • Behbehani, M. M. (1995). Functional characteristics of the midbrain periaqueductal gray. Progress in Neurobiology, 46(6), 575–605.

    Article  PubMed  CAS  Google Scholar 

  • Berryman, J. C. (1976). Guinea pig vocalizations: Their structure, causation and function. Ethology, 41(1), 80–106.

    CAS  Google Scholar 

  • Blanchard, R. J., Blanchard, D. C., Agullana, R., & Weiss, S. M. (1991). Twenty-two kHz alarm cries to presentation of a predator by laboratory rats living in visible burrow systems. Physiology & Behavior, 50(5), 967–972.

    Article  CAS  Google Scholar 

  • Blumburg, M. S., & Sokoloff, G. (2001). Do infant rats cry? Psychological Review, 108(1), 83–95.

    Article  Google Scholar 

  • Blumstein, D. T., & Armitage, K. B. (1997). Alarm calling in yellow-bellied marmots. I. The meaning of situationally specific calls. Animal Behaviour, 53(1), 143–171.

    Article  Google Scholar 

  • Blumstein, D. T., & Daniel, J. C. (2004). Yellow-bellied marmots discriminate among the alarm calls of individuals and are more responsive to the calls of juveniles. Animal Behaviour, 68(1), 1257–1265.

    Article  Google Scholar 

  • Blumstein, D. T., & Munos, O. (2004). Individual, age and sex-specific information is contained in yellow-bellied marmot alarm calls. Animal Behaviour, 69(1), 353–361.

    Google Scholar 

  • Blumstein, D. T., & Recapet, C. (2009). The sound of arousal: The addition of novel nonlinearities increases responsiveness in marmot alarm calls. Ethology, 115(11), 1074–1081.

    Article  Google Scholar 

  • Bradbury, J. W., & Vehrencamp, S. L. (2012). Principles of animal communication. Sunderland, MA: Sinauer Associates, Inc.

    Google Scholar 

  • Brudzynski, S. M. (2009). Communication of adult rats by ultrasonic vocalization: Biological, sociobiological, and neuroscience approaches. Institute for Laboratory Animal Research Journal, 50(1), 43–50.

    Article  CAS  Google Scholar 

  • Brudzynski, S. M. (2014). Social origin of vocal communication in rodents. In G. Witzany (Ed.), Biocommunication of animals (pp. 63–79). New York: Springer.

    Chapter  Google Scholar 

  • Brunelli, S. A., Shair, H. N., & Hofer, M. A. (1994). Hypothermic vocalizations of rat pups (Rattus norvegicus) elicit and direct maternal search behavior. Journal of Comparative Psychology, 108(3), 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Burda, H. (1995). Individual recognition and incest avoidance in eusocial common mole-rats rather than reproductive suppression by parents. Cellular and Molecular Life Sciences, 51(4), 411–413.

    Article  CAS  Google Scholar 

  • Burgdorf, J., Kroes, R. A., Moskal, J. R., Pfaus, J. G., et al. (2008). Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: Behavioral concomitants, relationship to reward, and self-administration playback. Journal of Comparative Psychology, 122(4), 357–367.

    Article  PubMed  Google Scholar 

  • Carter, G. G., Skowronski, M. D., Faure, P. A., & Fenton, B. (2008). Antiphonal calling allows individual discrimination in white-winged vampire bats. Animal Behaviour, 76(4), 1343–1355.

    Article  Google Scholar 

  • Catchpole, C., & Slater, P. (2003). Bird song: Biological themes and variations. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Chabout, J., Serreau, P., Ey, E., Bellier, L., et al. (2012). Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One, 7(1), e29401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chabout, J., Sarkar, A., Dunson, D. B., & Jarvis, E. D. (2015). Male mice song syntax depends on social contexts and influences female preferences. Frontiers in Behavioral Neuroscience, 9(1), 76.

    PubMed  PubMed Central  Google Scholar 

  • Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. New York: WW Norton & Company.

    Google Scholar 

  • Di Paolo, E. A. (1997). An investigation into the evolution of communication. Adaptive Behavior, 6(2), 285–324.

    Article  Google Scholar 

  • Ehret, G. (2005). Infant rodent ultrasounds—a gate to the understanding of sound communication. Behavior Genetics, 35(1), 19–29.

    Article  PubMed  Google Scholar 

  • Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68(4), 208–209.

    Article  PubMed  CAS  Google Scholar 

  • Ehret, G., & Haack, B. (1984). Motivation and arousal influence sound-induced maternal pup-retrieving behavior in lactating house mouse. Ethology, 65(1), 25–39.

    Google Scholar 

  • Endres, T., Widmann, K., & Fendt, M. (2007). Are rats predisposed to learn 22kHz calls as danger-predicting signals? Behavioural Brain Research, 185(2), 69–75.

    Article  PubMed  Google Scholar 

  • Ficken, M. S., Ficken, R. W., & Witkin, S. R. (1978). Vocal repertoire of the black-capped chickadee. The Auk, 95(1), 34–48.

    Article  Google Scholar 

  • Gourbal, B. F., Barthelemy, M., Petit, G., & Gabrion, C. (2004). Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. Naturwissenschaften, 91(8), 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Greene, E., & Meagher, T. (1998). Red squirrels, Tamiasciurus hudsonicus, produce predator-class specific alarm calls. Animal Behaviour, 55(3), 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Grimsley, J. M. S., Sheth, S. Vallabh, N., & Grimsley, C. A. (2016). Contextual modulation of vocal behavior in mouse: Newly identified “mid-frequency” vocalization emitted during restraint. Frontiers in Behavioral Neuroscience, 10(1), 38.

    PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., & Fischer, J. (2009). Female mice respond to male ultrasonic ‘songs’ with approach behavior. Biology Letters, 5(5), 589–592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., & Fischer, J. (2012a). The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS One, 7(7), e41133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammerschmidt, K., Reisinger, E., Westekemper, K., Ehrenreich, L., et al. (2012b). Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience, 13(1), 40. https://doi.org/10.1186/1471-2202-13-40

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt, K., Whelan, G., Eichele, G., & Fischer, J. (2015). Mice lacking the cerebral cortex develop normal song: Insights into the foundations of vocal learning. Scientific Reports, 5(1), 8808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto, H., Moritani, N., Aoki-Komori, S., Takana, M. & Saito, T. R. (2004). Comparison of ultrasonic vocalizations emitted by rodent pups. Experimental Animals, 53(5), 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Heth, G., Frankenberg, E., & Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42(11-12), 1287–1289.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, F., Mulsolf, K., & Penn, D. J. (2012). Spectrographic analyses reveal signals of individuality and kinship in the ultrasonic courtship vocalizations of wild house mice. Physiology & Behavior, 105(3), 766–771.

    Article  CAS  Google Scholar 

  • Hoier, S., Pfeifle, C., von Merten, S., & Linnenbrink, M. (2016). Communication at the garden fence: Context dependent vocalization in female house mice. PLoS One, 11(3), e0152255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holman, S. D. (1980). Sexually dimorphic, ultrasonic vocalizations of Mongolian gerbils. Behavioral and Neural Biology, 28(2), 183–192.

    Article  Google Scholar 

  • Holy, T. E., & Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biology, 3(12), e386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunyady, H. (2008). Vocal sounds of the chinchilla. MS Thesis, Bowling Green State Univeristy, OH. https://etd.ohiolink.edu/!etd.send_file%3Faccession%3Dbgsu1206318183%26disposition%3Dinline (Accessed Feb. 2018)

  • Inoue, Y., Sinun, W., Yosida, S., & Okanoya, K. (2013). Intergroup and intragroup antiphonal songs in wild male Mueller’s gibbons (Hylobates muelleri). Interaction Studies, 14(1), 24–43.

    Article  Google Scholar 

  • Jurgens, U. (1979). Neural control of vocalization in nonhuman primates. In H. D. Steklis & J. Raleigh (Eds.), Neurobiology of social communication in primates: An evolutionary perspective (pp. 11–44). London: Academic Press, Inc.

    Google Scholar 

  • Jurgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258.

    Article  Google Scholar 

  • Kagawa, H., Seki, Y., & Okanoya, K. (2017). Affective valence of neurons in the vicinity of the rat amygdala: Single unit activity in response to a conditioned behavior and vocal sound playback. Behavioural Brain Research, 324(1), 109–114.

    Article  PubMed  Google Scholar 

  • Kikusui, T., Nakanishi, K., Nakagawa, R., Nagasawa, M., et al. (2011). Cross fostering experiments suggest that mice songs are innate. PLoS One, 6(3), e17721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayasi, K. I., & Riquimaroux, H. (2012). Classification of vocalizations in the Mongolian gerbil, Meriones unguiculatus. The Journal of the Acoustical Society of America, 131(2), 1622–1631.

    Article  PubMed  Google Scholar 

  • Kondo, N., Watanabe, S., & Izawa, E-I. (2010). A temporal rule in vocal exchange among large-billed crows Corvus macrorhynchos in Japan. Ornithological Science, 9(1), 83–91.

    Article  Google Scholar 

  • Lange, S., Burda, H., Wegner, R. E., Dammann, P., et al. (2007). Living in a “stethoscope”: Burrow-acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94(2), 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Litvin, Y., Blanchard, D. C., & Blanchard, R. J. (2007). Rat 22 kHz ultrasonic vocalizations as alarm cries. Behavioural Brain Research, 182(2), 166–172.

    Article  PubMed  Google Scholar 

  • Liu, R. C., Miller, K. D., Merzenich, M. M., & Schreiner, C. E. (2003). Acoustic variability and distinguishability among mouse ultrasound vocalizations. The Journal of the Acoustical Society of America, 114(6), 3412–3422.

    Article  PubMed  Google Scholar 

  • Long, C. (2007). Vocalisations of the degu Octodon degus, a social caviomorph rodent. Bioacoustics, 16(3), 223–244.

    Article  Google Scholar 

  • Mahrt, E. J., Agarwal, A., Perkel, D., Portfors, C., Elemans, C. P. H. (2016). Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets. Cell Biology, 26(1), R880–881.

    CAS  Google Scholar 

  • Mahrt, E. J., Perkel, D. J., Tong, L., Rubel, E. W., & Portfors, C. V. (2013). Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. The Journal of Neuroscience, 33(13), 5573–5583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marler, P., Evans, C. S., & Hauser, M. D. (1992). Animal signals: Motivational, referential, or both. In: H. Papoušek, U. Jürgens, & M. Papoušek (Eds.), Nonverbal vocal communication: Comparative and developmental approaches (pp. 66–86). Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Matsumoto, Y. K., (2017). Types and functions of ultrasonic vocalizations in adult mice. Ph. D. dissertation. The University of Tokyo, Tokyo, Japan.

    Google Scholar 

  • Matsumoto, Y. K., & Okanoya, K. (2016). Phase-specific vocalizations of male mice at the initial encounter during the courtship sequence. PLoS One, 11(2), e0147102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto, Y. K., Okanoya, K., & Seki, Y. (2012). Effects of amygdala lesions on male mouse ultrasonic vocalizations and copulatory behaviour. Neuroreport, 23(11), 676–680.

    Article  PubMed  Google Scholar 

  • Melchior, H. R. (1971). Characteristics of arctic ground squirrel alarm calls. Oecologia, 7(2), 184–190.

    Article  PubMed  Google Scholar 

  • Mendl, M., Burman, O. H., Parker, R. M., & Paul, E. S. (2009). Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Applied Animal Behaviour Science, 118(3), 161–181.

    Article  Google Scholar 

  • Moreno-Gómez, F. N., Leon, A., Velásquez, N., & Delano, P. (2015). Individual and sex distinctiveness in bark calls of domestic chinchillas elicited in a distress context. The Journal of the Acoustical Society of America, 138(3), 1614–1622.

    Article  PubMed  Google Scholar 

  • Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. The American Naturalist, 111(981), 855–869.

    Article  Google Scholar 

  • Motomura, N., Shimizu, K., Shimizu, M., Aoki–Komori, S., et al. (2002). A comparative study of isolation-induced ultrasonic vocalization in rodent pups. Experimental Animals, 51(2), 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C., & Burda, H. (1989). Restricted hearing range in subterranean rodent, Cryptomys hottentotus. Naturwissenschaften, 76(3), 134–135.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, R., Nakagawa, R., Tokimoto, N., & Okanoya, K. (2013). Alarm call discrimination in a social rodent: Adult but not juvenile degu calls induce high vigilance. Journal of Ethology, 31(2), 115–121.

    Article  Google Scholar 

  • Neilans, E. G., Holfot, D. P., Radziwon, K. E., & Dent, M. L. (2014). Discrimination of ultrasonic vocalizations by CBA/CaJ mice (Mus musculus) is related to spectrotemporal dissimilarity of vocalizations. PLoS One, 9(1), e85405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neunuebel, J. P., Taylor, A. L., Arthur, B. J., & Egnor, S. E. R. (2015). Female mice ultrasonically interact with males during courtship displays. eLife, 4, e06203.

    Article  PubMed Central  Google Scholar 

  • Owings, D. H., & Virginia, R. A. (1978). Alarm calls of California ground squirrels (Spermophilus beecheyi). Ethology, 46(1), 58–70.

    Google Scholar 

  • Panksepp, J., & Burgdorf, J. (1999). Laughing rats? Playful tickling arouses high frequency ultrasonic chirping in young rodents. In S. R. Hameroff, A. W. Kaszniak, & D. J. Chalmers (Eds.), Toward a science of consciousness III (pp. 231–244). Cambridge: The MIT Press.

    Google Scholar 

  • Panksepp, J. & Burgdorf, J. (2000). 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: Effects of social housing and genetic variables. Behavioural Brain Research, 115(1), 25–38.

    Article  PubMed  CAS  Google Scholar 

  • Panksepp, J., & Burgdorf, J. (2003). “Laughing” rats and the evolutionary antecedents of human joy? Physiology & Behavior, 79(3), 533–547.

    Article  CAS  Google Scholar 

  • Parsana, A. J., Li, N., & Brown, T. H. (2012). Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behavioural Brain Research, 226(1), 77–86.

    Article  PubMed  Google Scholar 

  • Pepper, J. W., Braude, S. H., Lacey, E. A., & Sherman, P. W. (1991). Vocalizations of the naked mole-rat. In P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander (Eds.), The biology of the naked mole-rat (pp. 243–274). Princeton: Princeton University Press.

    Google Scholar 

  • Perla, B. S., & Slobodchikoff, C. (2002). Habitat structure and alarm call dialects in Gunnison's prairie dog (Cynomys gunnisoni). Behavioral Ecology, 13(6), 844–850.

    Article  Google Scholar 

  • Pomerantz, S. M., Nunez, A. A., & Bean, N. J. (1983). Female behavior is affected by male ulrasonic vocalizations in house mice. Physiology & Behavior, 31(1), 91–96.

    Article  CAS  Google Scholar 

  • Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46(1), 28–34.

    PubMed  CAS  Google Scholar 

  • Randall, J. A., & Rogovin, K. A. (2002). Variation in and meaning of alarm calls in a social desert rodent. Ethology, 108(6), 513–527.

    Article  Google Scholar 

  • Randall, J. A., McCowan, B., Collins, K. C., Hooper, S. L., & Rogovin, K. (2005). Alarm signals of the great gerbil: Acoustic variation by predator context, sex, age, individual, and family group. The Journal of the Acoustical Society of America, 118(4), 2706–2714.

    Article  PubMed  Google Scholar 

  • Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W., & Aquadro, C. F. (1990). DNA "fingerprinting" reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2496–2500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riede, T. (2013). Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(4), 213–224.

    Article  Google Scholar 

  • Sadananda, M., Wöhr, M., & Schwarting, R. K. (2008). Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differental c-fos expression in rat brain. Neuroscience Letters, 435(1), 17–23.

    Google Scholar 

  • Saito, Y., Yuki, S., Seki, Y., Kagawa, H., & Okanoya, K. (2016). Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion. Behavioural Processes, 132(1), 5–11.

    Article  PubMed  Google Scholar 

  • Sales, G. & Pye, D. (1974). Ultrasonic communication by animals. Netherlands: Springer-Verlag.

    Book  Google Scholar 

  • Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28(4), 1070–1094.

    Article  Google Scholar 

  • Sherman, P. W. (1977). Nepotism and the evolution of alarm calls. Science, 197(4310), 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, P. W., & Holmes, W. G. (1985). Kin recognition: Issues and evidence. In B. Holldobler & M. Lindauer (Eds.), Experimental behavioral ecology and sociobiology (pp. 437–460). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Smith, C. C. (1968). The adaptive nature of social organization in the genus of three squirrels Tamiasciurus. Ecological Monographs, 38(1), 31–64.

    Article  Google Scholar 

  • Smith, C. C. (1978). Structure and function of the vocalizations of tree squirrels (Tamiasciurus). Journal of Mammalogy, 59(4), 793–808.

    Article  Google Scholar 

  • Šuta, D., Popelář, J., Burianová, J., & Syka, J. (2013). Cortical representation of species-specific vocalizations in Guinea pig. PLoS One, 8(6), e65432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syka, J., Popelář, J., Kvašnák, E., Šuta, J., & Jilek, M. (1997). Processing of species-specific vocalizations in the inferior colliculus and medial geniculate body of the guinea pig. In J. Syka (Ed.), Acoustical signal processing in the central auditory system (pp. 431–441), Boston: Springer-Verlag.

    Chapter  Google Scholar 

  • Takeuchi, H., & Kawashima, S. (1986). Ultrasonic vocalizations and aggressive behavior in male rats. Physiology & Behavior, 38(4), 545–550.

    Article  CAS  Google Scholar 

  • Tinbergen, N., & Perdeck, A. C. (1951). On the stimulus situation releasing the begging response in the newly hatched herring gull chick (Larus argentatus argentatus Pont.). Behaviour, 3(1), 1–39.

    Article  Google Scholar 

  • Van der Poel, A. M., Noach, E. J. K., & Miczek, K. A. (1989). Temporal patterning of ultrasonic distress calls in the adult rat: Effects of morphine and benzodiazapines. Psychopharmacology, 97(2), 147–148.

    Article  PubMed  Google Scholar 

  • von Merten, S., Hoier, S., Pfeifle, C., & Tautz, D. (2014). A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One, 9(5), e97244.

    Article  CAS  Google Scholar 

  • Whitney, G., Cable, J. R., Stockton, M. D., & Tilson, E. F. (1973). Ultrasonic emissions: Do they facilitate courthip of mice? Journal of Comparative and Physiological Psychology, 84(3), 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. R., & Hare, J. F. (2004). Animal communication: Ground squirrel uses ultrasonic alarms. Nature, 430(6999), 523–523.

    Article  PubMed  CAS  Google Scholar 

  • Winter, P., Ploog, D., & Latta, J. (1966). Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Experimental Brain Research, 1(4), 359–384.

    Article  PubMed  CAS  Google Scholar 

  • Wright, J. M., Gourdon, J. C., & Clarke, P. B. S. (2010). Identification of multiple call categores within the rich repertoire of adult rat 50-kHz ultrasonic vocalizatons: Effects of amphetamine and social context. Psychopharmacology, 211(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Wöhr, M., & Schwarting, R. K. (2007). Ultrasonic communication in rats: Can playback of 50-kHz calls induce approach behavior? PLoS One, 2(12), e1365. https://doi.org/10.1371/journal.pone.0001365

  • Wöhr, M., & Schwarting, R. K. (2008). Maternal care, isolation-induced infant ultrasonic calling, and their relations to adult anxiety-related behavior in the rat. Behavioral Neuroscience, 122(2), 310–330.

    Article  PubMed  Google Scholar 

  • Wöhr, M., & Schwarting, R. K. (2013). Affective communication in rodents: Ultrasonic vocalizations as a tool for research on emotion. Cell and Tissue Research, 354(1), 81–97.

    Article  PubMed  Google Scholar 

  • Yosida, S., Kobayasi, K. I., Ikebuchi, M., Ozaki, R., & Okanoya, K. (2007). Antiphonal vocalization of a subterranean rodent, the naked mole-rat (Heterocephalus glaber). Ethology, 113(7), 703–710.

    Article  Google Scholar 

  • Yosida, S., & Okanoya, K. (2009). Naked mole-rat is sensitive to social hierarchy encoded in antiphonal vocalization. Ethology, 115(9), 823–831.

    Article  Google Scholar 

  • Yuki, S., & Okanoya, K. (2014). Behavioral correlates of 50-kHz ultrasonic vocalizations in rats: Progressive operant discrimination learning reduces frequency modulation and increases overall amplitude. Animal Behavior and Cognition, 1(4), 452–463.

    Article  Google Scholar 

  • Zahavi, A. (1975). Mate selection—a selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Davis, P. J., Bandler, R., & Carrive, P. (1994). Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. Journal of Neurophysiology, 72(3), 1337–1356.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT/JSPS KAKENHI Grant Number #4903, JP17H06380 to K.O. We thank Dr. Yui Matsumoto for drawing Fig. 2.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Okanoya .

Editor information

Editors and Affiliations

Ethics declarations

Kazou Okanoya declares he has no conflict of interest.

Laurel A. Screven declares she has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okanoya, K., Screven, L.A. (2018). Rodent Vocalizations: Adaptations to Physical, Social, and Sexual Factors. In: Dent, M., Fay, R., Popper, A. (eds) Rodent Bioacoustics. Springer Handbook of Auditory Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-92495-3_2

Download citation

Publish with us

Policies and ethics