Skip to main content

Structures and Composition of the Crab Carapace: An Archetypal Material in Biomimetic Mechanical Design

  • Chapter
  • First Online:
Marine Organisms as Model Systems in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 65))

Abstract

The structures and composition of crab carapaces are of interest to biomimetic designers and materials scientists as they are hierarchically optimised to dissipate fracture energies through molecular to macroscopic length scales. At each length scale, mechanical energy is absorbed and redirected, circumventing thus catastrophic fracture through the carapace cross-section on impact. The objective of this section is to elucidate the structural, chemical and compositional makeup of crab carapaces, to provide links between their architectures and mechanical properties, and to discuss highlight papers where attempts have been made to mimic the structure-property characteristics of crab carapaces in modern engineering composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralisation. Adv Mater 15:959–970

    Article  CAS  Google Scholar 

  • Aizenberg J, Lambert G, Weiner S, Addadi L (2002) Factors involved in the formation of amorphous crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39

    Article  CAS  PubMed  Google Scholar 

  • Alam P (2014a) Structural organisation and biomimesis of nature’s polymer composites. In: Laske S (ed) New developments in polymer composites research. Nova Science Publishers, New York, pp 325–379

    Google Scholar 

  • Alam P (2014b) Protein unfolding versus beta-sheet separation in spider-silk nanocrystals. Adv Nat Sci Nanosci Nanotechnol 5:015015(6)

    Article  CAS  Google Scholar 

  • Alam P (2015a) Mechanical properties of bio-nanostructured materials. In: Aliofkhazraei M (ed) Handbook of mechanical nanostructuring. Wiley-VCH, Weinheim

    Google Scholar 

  • Alam P (2015b) Biomimetic composite materials inspired by wood. In: Ansell MP (ed) Wood composites. Woodhead Publishing, Cambridge, pp. 357–394

    Google Scholar 

  • Alam P, Alam LP (2017) Biological stick-slip mechanisms: what impact does this have on materials mechanics and biomimetic design? Proceedings: Marquis International Symposium and Round Table, Cancun, Mexico, 22–26 Oct 2017

    Google Scholar 

  • Apichattrabut T, Ravi-Chandar K (2006) Helicoidal composites. Mech Adv Mater Struct 13:61–67

    Article  CAS  Google Scholar 

  • Bentov S, Erez J (2006) Impact of biomineralisation processes on the Mg content of foraminiferal shells: a biological perspective. Geomchem Geophys Geosyst 7:Q01P08

    Google Scholar 

  • Bentov S, Zaslansky P, Al-Sawalmih A, Masic A, Fratzl P, Sagi A, Berman A, Aichmayer B (2012) Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun 3:839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentov S, Abehsera S, Sagi A (2016) The mineralised exoskeletons of crystaceans. In: Cohen E, Moussian B (eds) Extracellular composite matrices in arthropods. Springer International Publishing, Switzerland

    Google Scholar 

  • Bouligand Y (1965a) Sur une architecture torsadée répandue dans de nombreuses cuticles d’Arthropodes. Acad Sci 261:3665–3668

    Google Scholar 

  • Bouligand Y (1965b) Sur une disposition fibrillaire torsadée commune à plusieurs structures biologiques. Acad Sci 262:4864–4867

    Google Scholar 

  • Bouligand Y (1966a) La géometrie des constituants cuticulaires chez les crabs à l’échelle des ultrastructures. In: Uyeda R (ed) Proceedings: 6th International Congress on Electron Microscopy, vol 2, Tokyo, pp 577–578

    Google Scholar 

  • Bouligand Y (1966b) La microarchitecture des carapacesd de crabe. J Microsc 5:34a

    Google Scholar 

  • Bouligand Y (1970) Aspects ultrastructuraux de la calcification chez les crabs. Proceedings: 7th International Congress on Electron Microscopy, Grenoble, pp 105–106

    Google Scholar 

  • Bouligand Y (1971) Les orientations fibrillaires dans le squelette des arthropods. I. L’example des crabs, l’arrangement torsade des strates. J Microsc 11:441–472

    Google Scholar 

  • Chen B, Peng X, Cai C, Niu H, Wu X (2006) Helcoidal microstructure of Scarabaei cuticle and biomimetic research. Mater Sci Eng A 423:237–242

    Article  CAS  Google Scholar 

  • Chen PY, Lin AYM, McKittrick J, Meyers MA (2008a) Structure and mechanical properties of crab exoskeletons. Acta Biomater 4:587–596

    Article  PubMed  Google Scholar 

  • Chen PY, Lin AYM, Lin YS, Seki Y, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008b) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1:208–226

    Article  PubMed  Google Scholar 

  • Cheng L, Thomas A, Glancey JL, Karlsson AL (2011) Mechanical behaviour of bioinspired laminated composites. Compos Part A 42:211–220

    Article  CAS  Google Scholar 

  • Cranford SW, Buehler MJ (2012) Biomateriomics. Springer International Pubishing AG, Springer-Nature, Cham

    Book  Google Scholar 

  • Currey JD, Nash A, Bonfield W (1982) Calcified cuticle in the stomatopod smashing limb. J Mater Sci 17:1939–1944

    Article  CAS  Google Scholar 

  • Dillman R (2005) Early pattern of calcification in the dorsal carapace of the blue crab Callinectes sapidus. J Morphol 263:356–374

    Article  Google Scholar 

  • Drach P (1939) Mue et cycle díntermue chez les crustaces decapodes. Ann Inst Oceanogr 19:103–391

    Google Scholar 

  • Erjavec M (2011) Mechanical properties of cellular materials. University of Ljubljana, Faculty of Mathematics and Physics

    Google Scholar 

  • Espinosa HD, Juster AL, Latourte FJ, Loh OY, Gregoire D, Zavattieri PD (2011) Tablet level origin of toughening in abaolone shells and translation to synthetic composite materials. Nat Commun 2:173

    Article  CAS  PubMed  Google Scholar 

  • Fabritius HO, Ziegler A, Friak M, Nikolov S, Huber J, Seidl BHM, Ruangchai S, Alagboso FI, Karsten S, Lu J, Janus AM, Petrov M, Zhu LF, Hemzalova P, Hild S, Raabe D, Neugebauer J (2016) Functional adaptation of crutacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspir Biomim 11:055006

    Article  CAS  PubMed  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusc shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Finnemore A, Cunha P, Shean T, Vignolini S, Guldin S, Oyen M, Steiner U (2012) Biomimetic layer-by-layer assembly of artificial nacre. Nat Commun 3:966

    Article  CAS  PubMed  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    Article  CAS  Google Scholar 

  • Giraud-Guille MM (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92

    Article  CAS  PubMed  Google Scholar 

  • Green JP, Neff MR (1972) A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4:137–171

    Article  CAS  PubMed  Google Scholar 

  • Greenway P (1985) Calcium balance and moulting in the Crustacea. Biol Rev 60:425–454

    Article  Google Scholar 

  • Gruber P, Bruckner D, Hellmich C, Schmiedmeyer HB, Stachelberger H, Gebeschuber IC (2011) Biomimetics—materials, structures and processes. Springer, Heidelberg

    Book  Google Scholar 

  • Grunenfelder LK, Herrera S, Kisailus D (2014a) Crustacean-derived biomimetic components and nanostructured composites. Small (16):3207–3232

    Google Scholar 

  • Grunenfelder LK, Suksangpanya N, Salinas C, Milliron G, Yaraghi N, Herrera S, Evans-Lutterodt K, Nutt SR, Zavattieri P, Kisailus D (2014b) Bio-inspired impact resistant composites. Acta Biomater 10:3997–4008

    Article  CAS  PubMed  Google Scholar 

  • Heberling F, Bosbach D, Eckhart JD, Fischer U, Glowacky J, Haist M, Kramar U, Loos S, Muller HS, Neumann T, Pust C, Schafer T, Stelling J, Ukrainczyk M, Vinograd V, Vucak M, Winkler B (2014) Reactivity of the calcite-water interface, from molecular scale processes to geochemical engineering. Appl Geochem 45:158–190

    Article  CAS  Google Scholar 

  • Hegdahl T, Gustavsen F, Silness J (1977a) The structure and mineralisation of the carapace of the crab (Cancer pagurus L.)—3. The epicuticle. Zool Scr 6:215–220

    Article  Google Scholar 

  • Hegdahl T, Gustavsen F, Silness J (1977b) The structure and mineralisation of the carapace of the crab (Cancer pagurus L.)—2. The exocuticle. Zool Scr 6:101–105

    Article  Google Scholar 

  • Hegdahl T, Gustavsen F, Silness J (1977c) The structure and mineralisation of the carapace of the crab (Cancer pagurus L.)—1. The endocuticle. Zool Scr 6:89–99

    Google Scholar 

  • Hepburn HR, Joffe I, Green N, Nelson KJ (1975) Mechanical properties of a crab shell. Comp Biochem Physiol 50A:551–554

    Article  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford. ISBN: 9780195049770

    Google Scholar 

  • Mangum CP, Defur PI, Fields JHA, Henry RP, Kormanik GA, McMahon BR, Ricci J, Towle DW, Wheatly MG (1985) Physiology of the blue crab Callinectes sapidus Rathbun during a molt. National symposium on the soft-shelled blue crab fishery, 12–13 Feb, pp 1–2

    Google Scholar 

  • Mrak P, Bogataj U, Stru J, Znidarsic N (2017) Cuticle morphogenesis in crustacean embryonic and postembryonic stages. Arthropod Struct Dev 46:77–95

    Article  PubMed  Google Scholar 

  • Murr LE (2014) Examples of natural composites and composite structures. In: Murr LE (ed) Handbook of materials structures, properties, processing and performance. Springer International Publishing AG, Cham

    Google Scholar 

  • Naleway SE, Taylor JRA, Porter MM, Meyers MA, McKittrick J (2016) Structure and mechanical properties of selected protective systems in marine organisms. Mater Sci Eng C 59:1143–1167

    Article  CAS  Google Scholar 

  • Osman TM, Hassan HA, Lewandowski JJ (2008) Interface effects on the quasi-static and impact toughness of discontinuously reinforced aluminium laminates. Metall Mater Trans A 39:1993–2006

    Article  CAS  Google Scholar 

  • Politi Y, Catchelor DR, Zaslansky P, Chmelka BF, Weaver JC, Sagi I, Weiner S, Addadi L (2010) Role of magnesium ion in the stabilisation of biogenic amorphous calcium carbonate: a structure-function investigation. Chem Mater 22:161–166

    Article  CAS  Google Scholar 

  • Priester C, Dillaman RM, Gay DM (2005) Ultrastructure, histochemistry, and mineralisation patterns in the ecdysial suture of the blue crab Callinectes sapidus. Microsc Microanal 11:479–499

    Article  CAS  PubMed  Google Scholar 

  • Ravi-Chandar K (2011) Design optimisation and characterisation of helicoidal composites with enhanced impact resistance. Army Research Office

    Google Scholar 

  • Raz S, Hamilton PC, Wilt FH, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilisation. Adv Funct Mater 13:480–486

    Article  CAS  Google Scholar 

  • Sanka I, Suyono EA, Rivero-Muller A, Alam P (2016) Carapace surface architectures facilitate camouflage of the decorator crab Tiarinia cornigera. Acta Biomater 41:52–59

    Article  PubMed  Google Scholar 

  • Sarikaya M (1994) An introduction to biomimetics: a structural viewpoint. Microsc Res Tech 27:360–375

    Article  CAS  PubMed  Google Scholar 

  • Simkiss K (1975) Bone and biomineralisation. Edward Arnold, London

    Google Scholar 

  • Sullivan T, McGuinness K, O Connor NE, Regan F (2014) Characterisation and anti-settlement aspects of surface micro-architectures from Cancer pagurus. Bioinspir Biomim 9:046003

    Article  CAS  PubMed  Google Scholar 

  • Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454–462

    Article  CAS  PubMed  Google Scholar 

  • Travis DF (1963) Structural features of mineralisation from tissue to macromolecular levels of organisation in the decapod crustacea. Ann N Y Acad Sci 109:177–245

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cheng Q, Tang Z (2012) Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem Soc Rev 41:945–1404

    Article  Google Scholar 

  • Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167–2181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvez Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, P. (2018). Structures and Composition of the Crab Carapace: An Archetypal Material in Biomimetic Mechanical Design. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_25

Download citation

Publish with us

Policies and ethics