Skip to main content

These Colors Don’t Run: Regulation of Pigment—Biosynthesis in Echinoderms

  • Chapter
  • First Online:
Marine Organisms as Model Systems in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 65))

Abstract

Pigment production is an important biological process throughout the tree of life. Some pigments function for collecting light energy, or for visual identification, while others have dramatic antimicrobial functions, or camouflage capabilities. The functions of these pigments and their biosynthesis are of great interest if only because of their diversity. The biochemistry of echinoderm pigmentation has been intensively studied for many years, and with more recent technologies, the origin and functions of these pigments are being exposed. Here we summarize the major pigment types in biology and emphasize the status of the field in echinoderms, taking full advantage of the new genomic and technologic resources for studying these important animals and their beautiful pigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beeble A, Calestani C (2012) Expression pattern of polyketide synthase-2 during sea urchin development. Gene Expr Patterns 12:7–10

    Article  CAS  PubMed  Google Scholar 

  • Calestani C, Rogers DJ (2010) Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase. Dev Biol 340:249–255

    Article  CAS  PubMed  Google Scholar 

  • Calestani C, Rast JP, Davidson EH (2003) Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130:4587–4596

    Article  CAS  PubMed  Google Scholar 

  • Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–D754

    Article  CAS  PubMed  Google Scholar 

  • Castoe TA, Stephens T, Noonan BP, Calestani C (2007) A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene 392:47–58

    Article  CAS  PubMed  Google Scholar 

  • Croce JC, McClay DR (2010) Dynamics of Delta/notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine AR (1962) Colours of Ophiocomina nigra (Abildgaard).2. Occurrence of melanin and fluorescent pigments. J Mar Biol Assoc UK 42:9–31

    Article  CAS  Google Scholar 

  • Fox DL, Hopkins TS (1966) The comparative biochemistry of pigments. In: Boolootian RA (ed) Physiology of echinodermata. Interscience Publishers, New York, pp 277–300

    Google Scholar 

  • Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173:546–557

    Article  CAS  PubMed  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  PubMed  Google Scholar 

  • Ho EC, Buckley KM, Schrankel CS, Schuh NW, Hibino T, Solek CM, Bae K, Wang G, Rast JP (2016) Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol Cell Biol 94:861–874

    Article  CAS  Google Scholar 

  • Hojo M, Omi A, Hamanaka G, Shindo K, Shimada A, Kondo M, Narita T, Kiyomoto M, Katsuyama Y, Ohnishi Y, Irie N, Takeda H (2015) Unexpected link between polyketide synthase and calcium carbonate biomineralization. Zool Lett 1:3. https://doi.org/10.1186/s40851-014-0001-0

    Article  Google Scholar 

  • Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA (2004) Cracking the polyketide code. PLoS Biol 2:166–169

    Article  CAS  Google Scholar 

  • Jacobson FW, Millott N (1953) Phenolases and melanogenesis in the coelomic fluid of the echinoid Diadema-antillarum phillippi. Proc R Soc Lond B Biol Sci 141:231–247

    Article  CAS  PubMed  Google Scholar 

  • Kendrew SG, Hopwood DA, Marsh ENG (1997) Identification of a monooxygenase from Streptomyces coelicolor A3(2) involved in biosynthesis of actinorhodin: purification and characterization of the recombinant enzyme. J Bacteriol 179:4305–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiselev KV, Ageenko NV, Kurilenko VV (2013) Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius. Dis Aquat Org 103:121–132

    Article  CAS  PubMed  Google Scholar 

  • MacMunn CA (1883) Studies in animal chromatology. Proc Bgham Phil Soc 3:351–407

    Google Scholar 

  • Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Materna SC, Ransick A, Li E, Davidson EH (2013) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375:92–104

    Article  CAS  PubMed  Google Scholar 

  • McClay DR, Peterson RE, Range RC, Winter-Vann AM, Ferkowicz MJ (2000) A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 127:5113–5122

    PubMed  CAS  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  Google Scholar 

  • Novakova E, Moran NA (2012) Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol 29:313–323

    Article  CAS  PubMed  Google Scholar 

  • O’Brien RV, Davis RW, Khosla C, Hillenmeyer ME (2014) Computational identification and analysis of orphan assembly-line polyketide synthases. J Antibiot 67:89–97

    Article  CAS  PubMed  Google Scholar 

  • Oliveri P, Carrick DM, Davidson EH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246:209–228

    Article  CAS  PubMed  Google Scholar 

  • Oulhen N, Wessel GM (2016) Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo. Mol Reprod Dev 83:1046–1047

    Article  CAS  PubMed  Google Scholar 

  • Perry G, Epel D (1981) Ca2+ -stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs. Exp Cell Res 134:65–72

    Article  CAS  PubMed  Google Scholar 

  • Ransick A, Davidson EH (2006) Cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297:587–602

    Article  CAS  PubMed  Google Scholar 

  • Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Dev Biol 364:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransick A, Rast JP, Minokawa T, Calestani C, Davidson EH (2002) New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. Dev Biol 246:132–147

    Article  CAS  PubMed  Google Scholar 

  • Salaque A, Barbier M, Lederer E (1967) Sur la biosynthèse de l’échinochrome A par l’oursin Arbacia pustulosa. Bull Soc Chim Biol 49:841–848

    PubMed  CAS  Google Scholar 

  • Schroder J, Raiber S, Berger T, Schmidt A, Schmidt J, Soares-Sello AM, Bardshiri E, Strack D, Simpson TJ, Veit M et al (1998) Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry 37:8417–8425

    Article  CAS  PubMed  Google Scholar 

  • Service M, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol 79B:161–165

    CAS  Google Scholar 

  • Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713

    PubMed  CAS  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millenium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Sweet HC, Hodor PG, Ettensohn CA (1999) The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126:5255–5265

    PubMed  CAS  Google Scholar 

  • Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955

    PubMed  CAS  Google Scholar 

  • Tu Q, Cameron RA, Davidson EH (2014) Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol 385:160–167

    Article  CAS  PubMed  Google Scholar 

  • Weissman K (2015a) Uncovering the structures of modular polyketide synthases. Nat Prod Rep 32:436–453

    Article  CAS  PubMed  Google Scholar 

  • Weissman K (2015b) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–670

    Article  CAS  PubMed  Google Scholar 

  • Weissman K (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Wessel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calestani, C., Wessel, G.M. (2018). These Colors Don’t Run: Regulation of Pigment—Biosynthesis in Echinoderms. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_22

Download citation

Publish with us

Policies and ethics