Skip to main content

Determining the Usability of Embedded Devices Based on Raspberry Pi and Programmed with CODESYS as Nodes in Networked Control Systems

  • Conference paper
  • First Online:
Computer Networks (CN 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 860))

Included in the following conference series:

Abstract

Since introduction of the Raspberry Pi embedded computers to the market, its popularity is constantly growing. More and more both hardware and software modules are available for that device. One of the later ones is CODESYS development environment, which make it possible to program Raspberry Pi like a regular Programmable Logic Controllers PLC. Using its network interfaces and industrial protocols like Ethercat or Profinet available in CODESYS, too, one could consider using Raspberry as a node in Networked Control System. Posts and opinions shared on Internet forums proofs it. However, one thing should not be ignored – Raspberry has been never intended to be implemented in industrial environment and was not designed as a real-time device. Therefore before practical application of Raspberry Pi, its temporal characteristics should be analyzed. It is the main concern in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, S., Vaibhav, A., Goyal, L.: Raspberry Pi based interactive home automation system through E-mail. In: 2014 International Conference on Reliability Optimization and Information Technology (ICROIT), pp. 277–280, February 2014

    Google Scholar 

  2. Vaidya, B., Patel, A., Panchal, A., Mehta, R., Mehta, K., Vaghasiya, P.: Smart home automation with a unique door monitoring system for old age people using python, opencv, android and raspberry Pi. In: 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 82–86, June 2017

    Google Scholar 

  3. Frieslaar, I., Irwin, B.: Investigating the electromagnetic side channel leakage from a raspberry Pi. In: 2017 Information Security for South Africa (ISSA), pp. 24–31, August 2017

    Google Scholar 

  4. Sharma, J., Anbarasu, M., Chakraborty, C., Shanmugasundaram, M.: Iris movement based wheel chair control using raspberry Pi - a state of art. In: 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–5, April 2017

    Google Scholar 

  5. Wardi, Achmad, A., Hasanuddin, Z.B., Asrun, D., Lutfi, M.S.: Portable IP-based communication system using raspberry Pi as exchange. In: 2017 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 198–204, October 2017

    Google Scholar 

  6. Kadiyala, E., Meda, S., Basani, R., Muthulakshmi, S.: Global industrial process monitoring through IoT using raspberry Pi. In: 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), pp. 260–262, March 2017

    Google Scholar 

  7. IEC 61131–3 Programmable controllers - Part 3: Programming languages (2003)

    Google Scholar 

  8. Rzońca, D., Sadolewski, J., Stec, A., Świder, Z., Trybus, B., Trybus, L.: CPDev engineering environment for control programming. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol. 577, pp. 303–314. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60699-6_29

    Google Scholar 

  9. Rząsa, W., Rzonca, D.: Event-driven approach to modeling and performance estimation of a distributed control system. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) CN 2016. CCIS, vol. 608, pp. 168–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39207-3_15

    Chapter  Google Scholar 

  10. Basile, F., Chiacchio, P., Gerbasio, D.: On the implementation of industrial automation systems based on PLC. IEEE Trans. Autom. Sci. Eng. 10(4), 990–1003 (2013)

    Article  Google Scholar 

  11. Jamro, M., Rzonca, D.: Impact of communication timeouts on meeting functional requirements for IEC 61131-3 distributed control systems. Automatika 56(4), 499–507 (2015)

    Article  Google Scholar 

  12. Masino, J., Frey, M., Gauterin, F., Sharma, R.: Development of a highly accurate and low cost measurement device for field operational tests. In: 2016 IEEE International Symposium on Inertial Sensors and Systems, pp. 74–77, February 2016

    Google Scholar 

  13. Menezes, V., Patchava, V., Gupta, M.S.D.: Surveillance and monitoring system using raspberry Pi and simplecv. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 1276–1278, October 2015

    Google Scholar 

  14. Abankwa, N., Squicciarini, G., Johnston, S., Scott, M., Cox, S.J.: An evaluation of the use of low-cost accelerometers in assessing fishing vessel stability through period of heave motion, October 2016

    Google Scholar 

  15. Mane, S.B., Vhanale, S.: Real time obstacle detection for mobile robot navigation using stereo vision. In: 2016 International Conference on Computing, Analytics and Security Trends (CAST), pp. 637–642, December 2016

    Google Scholar 

  16. Salunkhe, A.A., Kamble, P.P., Jadhav, R.: Design and implementation of can bus protocol for monitoring vehicle parameters. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 301–304, May 2016

    Google Scholar 

  17. Sahitya, S., Lokesha, H., Sudha, L.K.: Real time application of raspberry Pi in compression of images. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 1047–1050, May 2016

    Google Scholar 

  18. Joardar, S., Chatterjee, A., Rakshit, A.: A real-time palm dorsa subcutaneous vein pattern recognition system using collaborative representation-based classification. IEEE Trans. Instrum. Measur. 64(4), 959–966 (2015)

    Article  Google Scholar 

  19. Patruno, C., Marani, R., Nitti, M., D’Orazio, T., Stella, E.: An embedded vision system for real-time autonomous localization using laser profilometry. IEEE Trans. Intell. Transp. Syst. 16(6), 3482–3495 (2015)

    Article  Google Scholar 

  20. Guide for the EMC directive 2004/108/EC - european commission (2004)

    Google Scholar 

  21. Electromagnetic compatibiliy directive 2014/30/EU (2014)

    Google Scholar 

  22. Yuan, S.Y., Chung, W.Y., Chen, C.C., Chen, C.K.: Software-related EMI behavior of embedded microcontroller. In: 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 118–122, August 2014

    Google Scholar 

  23. Smys, S., Thara Prakash, J., Raj, J.S.: Conducted emission reduction by frequency hopping spread spectrum techniques. Nat. Acad. Sci. Lett. 38(3), 197–201 (2015)

    Article  Google Scholar 

  24. Kwiecień, A., Maćkowski, M., Skoroniak, K.: Reverse engineering of microprocessor program code. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 191–197. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31217-5_21

    Chapter  Google Scholar 

  25. Ma, W., Zhao, Z., Meng, J., Pan, Q., Zhang, L.: Precise methods for conducted emi modeling, analysis, and prediction. Sci. China Ser. E Technol. Sci. 51(6), 641–655 (2008)

    Article  Google Scholar 

  26. Yuan, S.Y., Su, W.B., Ho, H.P.: A software technique for EMI optimization, May 2012

    Google Scholar 

  27. Kreitlow, M., Garbe, H., Sabath, F.: Influence of software effects on the susceptibility of Ethernet connections. In: 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 544–548, August 2014

    Google Scholar 

  28. Kwiecień, A., Stój, J.: The cost of redundancy in distributed real-time systems in steady state. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 106–120. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13861-4_11

    Chapter  Google Scholar 

  29. Wideł, S., Flak, J., Gaj, P.: Interpretation of dual peak time signal measured in network systems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 141–152. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13861-4_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Stój .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stój, J., Smołka, I., Maćkowski, M. (2018). Determining the Usability of Embedded Devices Based on Raspberry Pi and Programmed with CODESYS as Nodes in Networked Control Systems. In: Gaj, P., Sawicki, M., Suchacka, G., Kwiecień, A. (eds) Computer Networks. CN 2018. Communications in Computer and Information Science, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-92459-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92459-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92458-8

  • Online ISBN: 978-3-319-92459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics