Skip to main content

Using Imaging to Design Dose Volume Constraints for Target and Normal Tissue to Reduce Toxicity

  • Chapter
  • First Online:
Stereotactic Radiosurgery for Prostate Cancer
  • 584 Accesses

Abstract

Multimodality imaging could be useful for clinicians to personalize target volume margins in stereotactic body radiotherapy for prostate cancer, allowing a better sparing of the organs at risk, and subsequently a reduction of treatment-related toxicity. In detail, magnetic resonance imaging is crucial to reduce the geometrical uncertainties in the delineation process. Additionally, magnetic resonance imaging can be used to improve treatment planning for prostate carcinoma by providing information that not only helps to more accurately delineation of the prostate and seminal vesicles, but also to define sub-targets within the prostate gland that can be treated to a higher dose. Using only computed tomography, the delineated volume could be imprecise, due to the low organ discriminating power based solely on differences of attenuation coefficients and the restriction to acquire images only in the transverse plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dasu A, Toma-Dasu I, et al. Prostate alpha/beta revisited an analysis of clinical results from 14168 patients. Acta Oncol. 2012;51(8):963–74.

    Article  Google Scholar 

  2. Tree AC, Khoo VS, van As NJ, Partridge M, et al. Is biochemical relapse-free survival after profoundly hypofractionated radiotherapy consistent with current radiobiological models? Clin Oncol. 2014;26(4):216–29.

    Article  CAS  Google Scholar 

  3. De Bari B, Arcangeli S, Ciardo D, Mazzola R, Alongi F, Russi EG, Santoni R, Magrini SM, Jereczek-Fossa BA, On the behalf of the Italian Association of Radiation Oncology (AIRO). Extreme hypofractionation for early prostate cancer: biology meets technology. Cancer Treat Rev. 2016;50:48–60.

    Article  Google Scholar 

  4. Aluwini S, van Rooij P, Hoogeman M, Kirkels W, Kolkman-Deurloo IK, Bangma C. Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results. Radiat Oncol. 2013;9(8):84.

    Article  Google Scholar 

  5. McBride SM, Wong DS, Dombrowski JJ, Harkins B, Tapella P, Hanscom HN, et al. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer. 2012;118(15):3681–90.

    Article  Google Scholar 

  6. King CR, Brooks JD, Gill H, Presti JC Jr, et al. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):877–82.

    Article  Google Scholar 

  7. Loblaw A, Cheung P, D’Alimonte L, Deabreu A, Mamedov A, Zhang L, et al. Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: toxicity, biochemical, and pathological outcomes. Radiother Oncol. 2013;107:153–8.

    Article  Google Scholar 

  8. Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007;67:1099–105.

    Article  Google Scholar 

  9. Kim DWN, Cho LC, Straka C, Christie A, Lotan Y, Pistenmaa D, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1–2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;89(3):509–17.

    Article  Google Scholar 

  10. Boike TP, Lotan Y, Cho LC, Brindle J, DeRose P, Xie XJ, et al. Phase I dose escalation study of SBRT for low- and intermediate-risk prostate cancer. J Clin Oncol. 2011;29(15):2020–6.

    Article  Google Scholar 

  11. Kang JK, Cho CK, Choi CW, Yoo S, Kim MS, Yang K, et al. Image-guided stereotactic body radiation therapy for localized prostate cancer. Tumori. 2011;97(1):43–8.

    Article  Google Scholar 

  12. Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, et al. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat Oncol. 2013;8:171.

    Article  Google Scholar 

  13. Freeman DE, King CR, et al. Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol. 2011;6:3.

    Article  Google Scholar 

  14. Bolzicco G, Favretto MS, Satariano N, Scremin E, Tambone C, Tasca A. A single center study of 100 consecutive patients with localized prostate cancer treated with stereotactic body radiotherapy. BMC Urol. 2013;17(13):49.

    Article  Google Scholar 

  15. Chen LN, Suy S, Uhm S, Oermann EK, Ju AW, Chen V, et al. Stereotactic body radiation therapy (SBRT) for clinically localized prostate cancer: the Georgetown University experience. Radiat Oncol. 2013;13(8):58.

    Article  Google Scholar 

  16. Oliai C, Lanciano R, Sprandio B, Yang J, Lamond J, Arrigo S, et al. Stereotactic body radiation therapy for the primary treatment of localized prostate cancer. J Radiat Oncol. 2013;2(1):63–70.

    Article  CAS  Google Scholar 

  17. Arscott WT, Chen LN, Wilson N, Bhagat A, Kim JS, Moures RA, et al. Obstructive voiding symptoms following stereotactic body radiation therapy for prostate cancer. Radiat Oncol. 2014;24(9):163.

    Article  Google Scholar 

  18. Fuller DB, Naitoh J, Lee C, Hardy S, Jin H, et al. Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys. 2008;70(5):1588–97.

    Article  Google Scholar 

  19. Janowski E, Chen LN, Kim JS, Lei S, Suy S, Collins B, et al. Stereotactic body radiation therapy (SBRT) for prostate cancer in men with large prostates (≥ 50 cm3). Radiat Oncol. 2014;15(9):241.

    Article  Google Scholar 

  20. Ju AW, Wang H, Oermann EK, Sherer BA, Uhm S, Chen VJ, et al. Hypofractionated stereotactic body radiation therapy as monotherapy for intermediate-risk prostate cancer. Radiat Oncol. 2013;31(8):30.

    Article  Google Scholar 

  21. Lee SW, Jang HS, Lee JH, Kim SH, Yoon SC, et al. Stereotactic body radiation therapy for prostate cancer patients with old age or medical comorbidity: a 5-year follow-up of an investigational study. Medicine. 2014;93(28):e290.

    Article  Google Scholar 

  22. Tree AC, Ostler P, Hoskin P, Dankulchai P, Nariyangadu P, Hughes RJ, et al. Prostate stereotactic body radiotherapy – first UK experience. Clin Oncol. 2014;26(12):757–61.

    Article  CAS  Google Scholar 

  23. Roeske JC, Forman JD, Mesina CF, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 1995;33(5):1321–9.

    Article  CAS  Google Scholar 

  24. Khoo V, Dearnaley D, Finnigan D, et al. Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol. 1997;42:1–15.

    Article  CAS  Google Scholar 

  25. Khoo V, Padhani A, Tanner S, et al. Comparison of MRI with CT for the radiotherapy planning of prostate cancer: a feasibility study. Br J Radiol. 1999;72:590–7.

    Article  CAS  Google Scholar 

  26. Ling C, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47:551–60.

    Article  CAS  Google Scholar 

  27. Gao Z, Wilkins D, Eapen L, et al. A study of prostate delineation referenced against a gold standard created from the visible human data. Radiother Oncol. 2007;85:239–46.

    Article  Google Scholar 

  28. Roach M, Faillace AP, Malfatti C, Holland J, Hricak H. Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 1996;35:1011–8.

    Article  Google Scholar 

  29. Kurhanewicz J, Vigneron D, Hricak H, et al. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology. 1996;198(3):795–805.

    Article  CAS  Google Scholar 

  30. Lee YK, Bollet M, Charles-Edwards G, Flower MA, Leach MO, McNair H, Moore E, Rowbottom C, Webb S. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol. 2003;66(2):203–16.

    Article  Google Scholar 

  31. Deurloo KE, Steenbakkers RJ, Zijp LJ, De Bois JA, Nowak PJCM, Rasch CRN, et al. Quantification of shape variation of prostate and seminal vesicles during external-beam radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61:228–38.

    Article  Google Scholar 

  32. Ghilezan MJ, Jaffray DA, Siewerdsen JH, van Herk M, Shetty A, Sharpe MB, et al. Prostate gland motion assessed with cine–magnetic resonance imaging (cine–MRI). Int J Radiat Oncol Biol Phys. 2005;62:406–17.

    Article  Google Scholar 

  33. Kerkhof EM, van der Put RW, Raaymakers BW, van der Heide UA, van Vulpen M, Lagendijk JJW. Variation in target and rectum dose due to prostate deformation: an assessment by repeated MR imaging and treatment planning. Phys Med Biol. 2008;53:5623–34.

    Article  CAS  Google Scholar 

  34. de Boer J, van Herk M, Pos FJ, Sonke JJ. Hybrid registration of prostate and seminal vescicles for image guided radiation therapy. Int J Radiat Oncol Biol Phys. 2012;86(1):177–82.

    Article  Google Scholar 

  35. Bittner N, Butler WM, Reed JL, Murray BC, Kurko BS, Wallner KE, et al. Electromagnetic tracking of intrafraction prostate displacement in patients externally immobilized in the prone position. Int J Radiat Oncol Biol Phys. 2010;77:490–5.

    Article  Google Scholar 

  36. Lovelock DM, Messineo AP, Cox BW, Kollmeier MA, Zelefsky MJ. Continuous monitoring and intrafraction target position correction during treatment improves target coverage for patients undergoing SBRT prostate therapy. Int J Radiat Oncol Biol Phys. 2015;91(3):588–94.

    Article  Google Scholar 

  37. Ballhausen H, Li M, Hegemann NS, Ganswindt U, Belka C. Intra-fraction motion of the prostate is a random walk. Phys Med Biol. 2015;60:549–63.

    Article  CAS  Google Scholar 

  38. Tong X, Chen X, Li J, Xu Q, Lin M, Chen L, et al. Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system. J Appl Clin Med Phys. 2015;16(2):51–61.

    Article  Google Scholar 

  39. Reggiori G, Mancosu P, Tozzi A, Cantone MC, Castiglioni S, Lattuada P, et al. Cone beam CT pre- and post-daily treatment for assessing geometrical and dosimetric intrafraction variability during radiotherapy of prostate cancer. J Appl Clin Med Phys. 2011;12:141–53.

    Article  Google Scholar 

  40. Ruggieri R, Naccarato S, Stavrev P, Stavreva N, Fersino S, Giaj Levra N, Mazzola R, Mancosu P, Scorsetti M, Alongi F. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer. Br J Radiol. 2015;88(1054):20140736.

    Article  Google Scholar 

  41. Both S, Wang KK, Plastaras JP, Deville C, Bar AV, Tochner Z, et al. Real-time study of prostate intrafraction motion during external beam radiotherapy with daily endorectal balloon. Int J Radiat Oncol Biol Phys. 2011;81(5):1302–9.

    Article  Google Scholar 

  42. D’Amico AV, Manola J, Loffredo M, Lopes L, Nissen K, O’Farrell DA, et al. A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys. 2001;51:1431–6.

    Article  Google Scholar 

  43. Van Lin EN, van der Vight LP, Witjes JA, Huisman HJ, Leer JW, Visser AG. The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. Int J Radiat Oncol Biol Phys. 2005;61:278–88.

    Article  Google Scholar 

  44. Court LE, D’Amico AV, Kadam D, Cormack R, et al. Motion and shape change when using an endorectal balloon during prostate radiation therapy. Radiother Oncol. 2006;81:184–9.

    Article  Google Scholar 

  45. Wang CW, Chong FC, Lai MK, Pu YS, Wu JK, Cheng JC. Set-up errors due to endorectal balloon positioning in intensity modulated radiation therapy for prostate cancer. Radiother Oncol. 2007;84:177–84.

    Article  Google Scholar 

  46. Smeenk RJ, Teh BS, Butler EB, van Lin EN, Kaanders JH, et al. Is there a role for endorectal balloons in prostate radiotherapy? A systematic review. Radiother Oncol. 2010;95(3):277–82.

    Article  Google Scholar 

  47. Ahmad S, Vlachaki MT, Teslow TN, Amosson CM, McGary J, Teh BS, et al. Impact of setup uncertainty in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with Peacock/IMRT. Med Dosim. 2005;30:1–7.

    Article  Google Scholar 

  48. Vlachaki MT, Teslow TN, Ahmad S, et al. Impact of endorectal balloon in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with IMRT. Med Dosim. 2007;32:281–6.

    Article  Google Scholar 

  49. Patel RR, Orton N, Tomé WA, Chappell R, Ritter MA, et al. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiother Oncol. 2003;67:285–94.

    Article  Google Scholar 

  50. Sanghani MV, Ching J, Schultz D, Cormack R, Loffredo M, McMahon E, et al. Impact on rectal dose from the use of a prostate immobilization and rectal localization device for patients receiving dose escalated 3D conformal radiation therapy. Urol Oncol. 2004;22:165–8.

    Article  Google Scholar 

  51. Van Lin EN, Kristinsson J, Philippens ME, de Jong DJ, van der Vight LP, Kaanders JH, et al. Reduced late rectal mucosal changes after prostate three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy. Int J Radiat Oncol Biol Phys. 2007;67:799–811.

    Article  Google Scholar 

  52. Goldner G, Tomicek B, Becker G, Geinitz H, Wachter S, Zimmermann F, et al. Proctitis after external-beam radiotherapy for prostate cancer classified by Vienna Rectoscopy Score and correlated with EORTC/RTOG score for late rectal toxicity: results of a prospective multicenter study of 166 patients. Int J Radiat Oncol Biol Phys. 2007;67:78–83.

    Article  Google Scholar 

  53. Goldner G, Bombosch V, Geinitz H, Becker G, Wachter S, Glocker S, et al. Moderate risk-adapted dose escalation with three-dimensional conformal radiotherapy of localized prostate cancer from 70 to 74 Gy. First report on 5-year morbidity and biochemical control from a prospective Austrian-German multicenter phase II trial. Strahlenther Onkol. 2009;185:94–100.

    Article  Google Scholar 

  54. Woel R, Beard C, Chen MH, Hurwitz M, Loffredo M, McMahon E, et al. Acute gastrointestinal, genitourinary, and dermatological toxicity during dose escalated 3D-conformal radiation therapy (3DCRT) using an intrarectal balloon for prostate gland localization and immobilization. Int J Radiat Oncol Biol Phys. 2005;62:392–6.

    Article  Google Scholar 

  55. D’Amico AV, Manola J, McMahon E, Loffredo M, Lopes L, Ching J, et al. A prospective evaluation of rectal bleeding after dose-escalated three dimensional conformal radiation therapy using an intrarectal balloon for prostate gland localization and immobilization. Urology. 2006;67:780–4.

    Article  Google Scholar 

  56. Slater JD, Rossi CJ Jr, Yonemoto LT, Bush DA, Jabola BR, Levy RP, et al. Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys. 2004;59:348–52.

    Article  Google Scholar 

  57. Kataria T, Gupta D, Goyal S, Bisht SS, Chaudhary R, Narang K, et al. Simple diagrammatic method to delineate male urethra in prostate cancer radiotherapy: an MRI based approach. Br J Radiol. 2016;89(1068):20160348.

    Article  Google Scholar 

  58. Chen ME, Johnston DA, Tang K, Babaian RJ, Troncoso P. Detailed mapping of prostate carcinoma foci: biopsy strategy implications. Cancer. 2000;89:1800–9.

    Article  CAS  Google Scholar 

  59. Perna L, Cozzarini C, Maggiulli E, Fellin G, Rancati T, Valdagni R, Vavassori V, Villa S, Fiorino C. Inter-observer variability in contouring the penile bulb on CT images for prostate cancer treatment planning. Radiat Oncol. 2011;6:123.

    Article  Google Scholar 

  60. Roach M III. Is it time to change the standard of care from CT to MRI for defining the apex of the prostate to accomplish potency sparing radiotherapy? Int J Radiat Oncol Biol Phys. 2005;61:1–2.

    Article  Google Scholar 

  61. Perna L, Fiorino C, Cozzarini C, Broggi S, Cattaneo GM, De Cobelli F, Mangili P, Di Muzio N, Calandrino R. Sparing the penile bulb in the radical irradiation of clinically localised prostate carcinoma: a comparison between MRI and CT prostatic apex definition in 3DCRT, Linac-IMRT and helical tomotherapy. Radiother Oncol. 2009;93(1):57–63.

    Article  Google Scholar 

  62. Roach M 3rd, Nam J, Gagliardi G, El Naqa I, Deasy JO, Marks LB. Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S130–4.

    Article  Google Scholar 

  63. Kupelian PA, Willoughby TR, Meeks SL, Forbes A, Wagner T, Maach M, et al. Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys. 2005;62(5):1291–6.

    Article  Google Scholar 

  64. Nichols AM, Brock KK, Lockwood GA, Moseley DJ, Rosewall T, Warde PR, et al. A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers. Int J Radiat Oncol Biol Phys. 2007;67:48–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Alongi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzola, R., Alongi, F. (2019). Using Imaging to Design Dose Volume Constraints for Target and Normal Tissue to Reduce Toxicity. In: Zelefsky, M. (eds) Stereotactic Radiosurgery for Prostate Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-92453-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92453-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92452-6

  • Online ISBN: 978-3-319-92453-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics