Skip to main content

Mechanical Sequential Counting with Liquid Marbles

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2018)

Abstract

Here we demonstrate the first working example of a liquid marble-operated sequential binary counting device. We have designed a lightweight gate that can be actuated by the low mass and momentum of a liquid marble. By linking a number of these gates in series, we are able to digitally count up to binary 1111 (upper limit only by our requirements). Using liquid marbles in such a system opens up new avenues of research and design, by way of modifying the coating and/or core of the liquid marbles, and thereby giving extra dimensions for calculation (e.g. a calculation that takes into consideration the progress of a chemical reaction inside a liquid marble). In addition, the new gate design has multiple uses in liquid marble rerouting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asare-Asher, S., Connor, J.N., Sedev, R.: Elasticity of liquid marbles. J. Colloid Interface Sci. 449, 341–346 (2015). https://doi.org/10.1016/j.jcis.2015.01.067

    Article  Google Scholar 

  2. Asbury, W.: US Patent 957,135 (1909)

    Google Scholar 

  3. Aussillous, P., Quéré, D.: Liquid marbles. Nature 411(6840), 924–927 (2001). https://doi.org/10.1038/35082026

    Article  MATH  Google Scholar 

  4. Aussillous, P., Quéré, D.: Properties of liquid marbles. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2067), 973–999 (2006). https://doi.org/10.1098/rspa.2005.1581

    Article  MATH  Google Scholar 

  5. Bhosale, P.S., Panchagnula, M.V., Stretz, H.A.: Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl. Phys. Lett. 93(3), 034109 (2008). https://doi.org/10.1063/1.2959853

    Article  Google Scholar 

  6. Bormashenko, E., Bormashenko, Y.: Non-stick droplet surgery with a superhydrophobic scalpel. Langmuir 27(7), 3266–3270 (2011). https://doi.org/10.1021/la200258u

    Article  Google Scholar 

  7. Bormashenko, E., Pogreb, R., Balter, R., Aharoni, H., Aurbach, D., Strelnikov, V.: Liquid marbles containing petroleum and their properties. Pet. Sci. 12(2), 340–344 (2015). https://doi.org/10.1007/s12182-015-0016-y

    Article  Google Scholar 

  8. Chandan, S., Ramakrishna, S., Sunitha, K., Satheesh Chandran, M., Santhosh Kumar, K.S., Mathew, D.: pH-responsive superomniphobic nanoparticles as versatile candidates for encapsulating adhesive liquidmarbles. J. Mater. Chem. A 5(43), 22813–22823 (2017). https://doi.org/10.1039/C7TA07562F

    Article  Google Scholar 

  9. Draper, T.C., Fullarton, C., Phillips, N., de Lacy Costello, B.P., Adamatzky, A.: Liquid marble interaction gate for collision-based computing. Mater. Today 20(10), 561–568 (2017). https://doi.org/10.1016/j.mattod.2017.09.004

    Article  Google Scholar 

  10. Fair, R.B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluidics 3(3), 245–281 (2007). https://doi.org/10.1007/s10404-007-0161-8

    Article  Google Scholar 

  11. Fullarton, C., Draper, T.C., Phillips, N., Mayne, R., de Lacy Costello, B.P.J., Adamatzky, A.: Evaporation, lifetime, and robustness studies of liquid marbles for collision-based computing. Langmuir 34(7), 2573–2580 (2018). https://doi.org/10.1021/acs.langmuir.7b04196

    Article  Google Scholar 

  12. Godfrey, J.T.: US Patent 3,390,471 (1965)

    Google Scholar 

  13. Guttenberg, Z., Müller, H., Habermüller, H., Geisbauer, A., Pipper, J., Felbel, J., Kielpinski, M., Scriba, J., Wixforth, A.: Planar chip devicefor PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3), 308–317 (2005). https://doi.org/10.1039/B412712A

    Article  Google Scholar 

  14. Kimball, W.D., Braren, C.I., Schaefer, G.P.: US Patent 2,052,513 (1930)

    Google Scholar 

  15. Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 107–134. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0129-1_5

    Chapter  Google Scholar 

  16. McEvoy, G.N.: US Patent 884,605 (1905)

    Google Scholar 

  17. Nguyen, N.T., Hejazian, M., Ooi, C., Kashaninejad, N.: Recent advances and future perspectives on microfluidic liquid handling. Micromachines 8(6), 186 (2017). https://doi.org/10.3390/mi8060186

    Article  Google Scholar 

  18. Oliveira, N.M., Reis, R.L., Mano, J.F.: The potential of liquid marbles for biomedical applications: a critical review. Adv. Healthc. Mater. 6(19), 1700192 (2017). https://doi.org/10.1002/adhm.201700192

    Article  Google Scholar 

  19. Ooi, C.H., Nguyen, N.T.: Manipulation of liquid marbles. Microfluid. Nanofluidics 19(3), 483–495 (2015). https://doi.org/10.1007/s10404-015-1595-z

    Article  Google Scholar 

  20. Zhang, Y., Nguyen, N.T.: Magnetic digital microfluidics a review. Lab Chip 17(6), 994–1008 (2017). https://doi.org/10.1039/C7LC00025A

    Article  Google Scholar 

  21. Zhang, Y., Park, S., Liu, K., Tsuan, J., Yang, S., Wang, T.H.: A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11(3), 398–406 (2011). https://doi.org/10.1039/C0LC00296H

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the EPSRC with grant EP/P016677/1 ‘Computing with Liquid Marbles’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Draper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Draper, T.C., Fullarton, C., Phillips, N., de Lacy Costello, B.P.J., Adamatzky, A. (2018). Mechanical Sequential Counting with Liquid Marbles. In: Stepney, S., Verlan, S. (eds) Unconventional Computation and Natural Computation. UCNC 2018. Lecture Notes in Computer Science(), vol 10867. Springer, Cham. https://doi.org/10.1007/978-3-319-92435-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92435-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92434-2

  • Online ISBN: 978-3-319-92435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics