Skip to main content

The Scope of a Relativistic Quantum Process with Spin-Momentum Entanglement

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10867))

Abstract

Using an imperfectly prepared state, we show that under a Lorentz transformation, the evolution of a massive spin-1/2 particle violates many standard assumptions made in quantum information theory, including complete positivity. Unlike other recent endeavors in relativistic quantum information, we are able to quantify and maximize how much information can be transferred through such a quantum process by calculating the scope. We show that, surprisingly, in many instances the relativistic noise increases the amount of information that can be transferred, and in fact, even if the initial state is arbitrarily close to the completely mixed state, information can still be transferred perfectly.

The rights of this work are transferred to the extent transferable according to title 17 \({\mathbb S}\) 105 U.S.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)

    Article  MathSciNet  Google Scholar 

  2. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  4. Peres, A., Terno, D.R.: Relativistic doppler effect in quantum communication. J. Mod. Opt. 50, 1165–1173 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New Jersey (2006)

    MATH  Google Scholar 

  6. Martin, K.: The scope of a quantum channel. Proc. Symp. Appl. Math. 71, 183–211 (2008)

    Article  MathSciNet  Google Scholar 

  7. Martin, K., Crowder, T., Feng, J.: Quantum error reduction without coding. In: Proceedings of Radar Sensor Technology XIX; and Active and Passive Signatures VI. 946114, vol. 9461 (2015)

    Google Scholar 

  8. Lanzagorta, M., Uhlmann, J.: Quantum computational complexity in curved spacetime. In: Burgin, M., Calude, C. (eds.) Information and Complexity, pp. 227–248. World Scientific (2016)

    MATH  Google Scholar 

  9. Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  10. Lanzagorta, M.: Quantum Information in Gravitational Fields. Institute of Physics, California (2013)

    MATH  Google Scholar 

  11. Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  12. Lanzagorta, M., Salgado, M.: Detection of gravitational frame dragging using orbiting qubits. Class. Quantum Grav. 33, 105013 (2016)

    Article  MathSciNet  Google Scholar 

  13. Céleri, L.C., Kiosses, V., Terno, D.R.: Spin and localization of relativistic fermions and uncertainty relations. Phys. Rev. A 94, 062115 (2016)

    Article  Google Scholar 

  14. Saldanha, P., Vedral, V.: Physical interpretation of the wigner rotations and its implications for relativistic quantum information. New J. Phys. 14, 023041 (2012)

    Article  Google Scholar 

  15. Lanzagorta, M., Crowder, T.: Comment on wigner rotations and an apparent paradox in relativistic quantum information. Phys. Rev. A 96, 026101 (2017)

    Article  Google Scholar 

  16. Taillebois, E.R.F., Avelar, A.T.: Spin-reduced density matrices for relativistic particles. Phys. Rev. A 88, 060302 (2013)

    Article  Google Scholar 

  17. Choi, T.: Relativistic spin operator and lorentz transformation of the spin state of a massive dirac particle. J. Korean Phys. Soc. 62, 1085–1092 (2013)

    Article  Google Scholar 

  18. Bauke, H., et. al.: Relativistic spin operators in various electromagnetic environments. Phys. Rev. A. 89 052101 (2014)

    Google Scholar 

  19. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45, 1216–1227 (1999)

    Article  MathSciNet  Google Scholar 

  20. Crowder, T., Martin, K.: Classical representations of qubit channels. Electron. Notes Theor. Comp. Sci. 270, 37–58 (2011)

    Article  Google Scholar 

  21. Crowder, T., Martin, K.: Information theoretic representations of qubit channels. Found. Phys. 42, 976–983 (2012)

    Article  MathSciNet  Google Scholar 

  22. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  Google Scholar 

  23. Crowder, T.: Representations of Quantum Channels. Dissertation, Howard University (2013)

    Google Scholar 

  24. Crowder, T.: A quantum representation for involution groups. Electron. Notes Theor. Comput. Sci. 276, 145–158 (2011)

    Article  MathSciNet  Google Scholar 

  25. Crowder, T.: A linearization of quantum channels. J. Geom. Phys. 92, 157–166 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Fuchs, K. Martin, and D. Terno for their helpful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanner Crowder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature (outside the US)

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crowder, T., Lanzagorta, M. (2018). The Scope of a Relativistic Quantum Process with Spin-Momentum Entanglement. In: Stepney, S., Verlan, S. (eds) Unconventional Computation and Natural Computation. UCNC 2018. Lecture Notes in Computer Science(), vol 10867. Springer, Cham. https://doi.org/10.1007/978-3-319-92435-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92435-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92434-2

  • Online ISBN: 978-3-319-92435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics