Skip to main content

Cardiac MRI in Diagnosis and Management

  • Chapter
  • First Online:
  • 1385 Accesses

Abstract

Cardiac magnetic resonance imaging (CMR) is an essential tool for diagnosis, risk stratification, and treatment of patients with hypertrophic cardiomyopathy (HCM). CMR works by manipulating protons found in myocytes and contrast agents such as gadolinium, using magnetic pull to create and detect energy differences in order to obtain images. CMR is ideal for determining location and extent of hypertrophy, presence of membranes, distribution of fibrosis, as well as for identifying anatomy and physiology of the mitral valve, all of which are crucial for management of HCM and can be missed on standard echocardiography. This is especially true for areas of the heart that are difficult to evaluate on echocardiography, such as the apex and lateral wall, as well as atypical presentations, e.g., focal segmental hypertrophy. Additionally, CMR enables accurate assessment of ventricular volumes, mass, and function, which have diagnostic, as well as prognostic value. Magnetic resonance tagging and delayed enhancement with gadolinium contrast agents allow for strain and perfusion analysis, further increasing the utility of CMR to detect regional function and cardiac microvascular ischemia. Delayed enhancement may also improve risk stratification for sudden cardiac death. Limitations of CMR include difficulty to assess left ventricular outflow tract gradients and the ability to identify highly mobile structures on the mitral valve, although newer protocols and improved technology may be able to compensate for these deficits in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bruder O, Schneider S, Nothnagel D, Dill T, Hombach V, Schulz-Menger J, et al. EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the German pilot phase. J Am Coll Cardiol. 2009;54(15):1457–66.

    Article  PubMed  Google Scholar 

  2. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol. 2002;9(2):240–5.

    Article  PubMed  Google Scholar 

  3. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU. Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging. 2001;14(3):230–6.

    Article  CAS  PubMed  Google Scholar 

  4. Miller S, Simonetti OP, Carr J, Kramer U, Finn JP. MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology. 2002;223(1):263–9.

    Article  PubMed  Google Scholar 

  5. Roussakis A, Baras P, Seimenis I, Andreou J, Danias PG. Relationship of number of phases per cardiac cycle and accuracy of measurement of left ventricular volumes, ejection fraction, and mass. J Cardiovasc Magn Reson. 2004;6(4):837–44.

    Article  PubMed  Google Scholar 

  6. Nagel E, Schneider U, Schalla S, Ibrahim T, Schnackenburg B, Bornstedt A, et al. Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson. 2000;2(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  7. Jahnke C, Nagel E, Gebker R, Bornstedt A, Schnackenburg B, Kozerke S, et al. Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging. 2007;25(4):737–42.

    Article  PubMed  Google Scholar 

  8. Gerber BL, Raman SV, Nayak K, Epstein FH, Ferreira P, Axel L, et al. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson. 2008;10:18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging. 2004;19(6):758–70.

    Article  PubMed  Google Scholar 

  10. Romero J, Kahan J, Kelesidis I, Makani H, Wever-Pinzon O, Medina H, et al. CMR imaging for the evaluation of myocardial stunning after acute myocardial infarction: a meta-analysis of prospective trials. Eur Heart J Cardiovasc Imaging. 2013;14(11):1080–91.

    Article  PubMed  Google Scholar 

  11. Francis JM, Pennel DJ. Treatment of claustrophobia for cardiovascular magnetic resonance: use and effectiveness of mild sedation. J Cardiovasc Magn Reson. 2000;2:139–41.

    Article  CAS  PubMed  Google Scholar 

  12. Chen MM, Coakley FV, Kaimal A, Laros RK Jr. Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol. 2008;112(2 Pt 1):333–40.

    Article  PubMed  Google Scholar 

  13. Expert Panel on MRS, Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30.

    Article  Google Scholar 

  14. Heinrichs WL, Fong P, Flannery M, Heinrichs SC, Crooks LE, Spindle A, et al. Midgestational exposure of pregnant BALB/c mice to magnetic resonance imaging conditions. Magn Reson Imaging. 1988;6(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  15. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW, et al. ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol. 2007;188(6):1447–74.

    Article  PubMed  Google Scholar 

  16. Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2007;116(24):2878–91.

    Article  PubMed  Google Scholar 

  17. Russo RJ, Costa HS, Silva PD, Anderson JL, Arshad A, Biederman RW, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med. 2017;376(8):755–64.

    Article  PubMed  Google Scholar 

  18. Kalin R, Stanton MS. Current clinical issues for MRI scanning of pacemaker and defibrillator patients. Pacing Clin Electrophysiol. 2005;28(4):326–8.

    Article  PubMed  Google Scholar 

  19. Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  20. Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007;115(6):773–81.

    Article  PubMed  Google Scholar 

  21. Olivotto I, Maron MS, Autore C, Lesser JR, Rega L, Casolo G, et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;52(7):559–66.

    Article  PubMed  Google Scholar 

  22. Kitaoka H, Doi Y, Casey SA, Hitomi N, Furuno T, Maron BJ. Comparison of prevalence of apical hypertrophic cardiomyopathy in Japan and the United States. Am J Cardiol. 2003;92(10):1183–6.

    Article  PubMed  Google Scholar 

  23. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242–55.

    Article  PubMed  Google Scholar 

  24. Elliot P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881–91.

    Article  CAS  Google Scholar 

  25. Geske JB, Sorajja P, Ommen SR, Nishimura RA. Variability of left ventricular outflow tract gradient during cardiac catheterization in patients with hypertrophic cardiomyopathy. JACC Cardiovasc Interv. 2011;4(6):704–9.

    Article  PubMed  Google Scholar 

  26. Wigle ED. Cardiomyopathy: the diagnosis of hypertrophic cardiomyopathy. Heart. 2001;86:709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noureldin RA, Liu S, Nacif MS, Judge DP, Halushka MK, Abraham TP, et al. The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Valente AM, Lakdawala NK, Powell AJ, Evans SP, Cirino AL, Orav EJ, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging in hypertrophic cardiomyopathy sarcomere mutation carriers without left ventricular hypertrophy. Circ Cardiovasc Genet. 2013;6(3):230–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Devlin AM, Moore NR, Ostman-Smith I. A comparison of MRI and echocardiography in hypertrophic cardiomyopathy. Br J Radiol. 1999;72(855):258–64.

    Article  CAS  PubMed  Google Scholar 

  30. Hindieh W, Weissler-Snir A, Hammer H, Adler A, Rakowski H, Chan RH. Discrepant measurements of maximal left Ventricular Wall thickness between cardiac magnetic resonance imaging and echocardiography in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2017;10(8):e006309.

    Article  PubMed  Google Scholar 

  31. Sperling RT, Parker JA, Manning WJ, Danias PG. Apical hypertrophic cardiomyopathy: clinical, electrocardiographic, scintigraphic, echocardiographic, and magnetic resonance imaging findings of a case. J Cardiovasc Magn Reson. 2002;4(2):291–5.

    Article  PubMed  Google Scholar 

  32. Moon JC, Fisher NG, McKenna WJ, Pennell DJ. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart. 2004;90(6):645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eriksson MJ, Sonnenberg B, Woo A, Rakowski P, Parker TG, Wigle ED, et al. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39(4):638–45.

    Article  PubMed  Google Scholar 

  34. Klarich KW, Attenhofer Jost CH, Binder J, Connolly HM, Scott CG, Freeman WK, et al. Risk of death in long-term follow-up of patients with apical hypertrophic cardiomyopathy. Am J Cardiol. 2013;111(12):1784–91.

    Article  PubMed  Google Scholar 

  35. Jan MF, Todaro MC, Oreto L, Tajik AJ. Apical hypertrophic cardiomyopathy: present status. Int J Cardiol. 2016;222:745–59.

    Article  PubMed  Google Scholar 

  36. Maron M, Maron B, Harrigan C. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54:220–8.

    Article  PubMed  Google Scholar 

  37. Rickers C, Wilke NM, Jerosch-Herold M, Casey SA, Panse P, Panse N, et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. 2005;112(6):855–61.

    Article  PubMed  Google Scholar 

  38. Maron BJ, Seidman JG, Seidman CE. Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(11):2125–32.

    Article  PubMed  Google Scholar 

  39. Rowin EJ, Maron BJ, Haas TS, Garberich RF, Wang W, Link MS, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. J Am Coll Cardiol. 2017;69(7):761–73.

    Article  PubMed  Google Scholar 

  40. Bergey PD, Axel L. Focal hypertrophic cardiomyopathy simulating a mass: MR tagging for correct diagnosis. AJR Am J Roentgenol. 2000;174(1):242–4.

    Article  CAS  PubMed  Google Scholar 

  41. Harrigan CJ, Appelbaum E, Maron BJ, Buros JL, Gibson CM, Lesser JR, et al. Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol. 2008;101(5):668–73.

    Article  PubMed  Google Scholar 

  42. Kwon DH, Setser RM, Thamilarasan M, Popovic ZV, Smedira NG, Schoenhagen P, et al. Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Heart. 2008;94(10):1295–301.

    Article  CAS  PubMed  Google Scholar 

  43. Patel P, Dhillon A, Popovic ZB, Smedira NG, Rizzo J, Thamilarasan M, et al. Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy patients without severe Septal hypertrophy: implications of mitral valve and papillary muscle abnormalities assessed using cardiac magnetic resonance and echocardiography. Circ Cardiovasc Imaging. 2015;8(7):e003132.

    Article  PubMed  Google Scholar 

  44. Maron MS, Olivotto I, Harrigan C, Appelbaum E, Gibson CM, Lesser JR, et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation. 2011;124(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  45. Klues HG, Maron BJ, Dollar AL, Roberts WC. Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation. 1992;85(5):1651–60.

    Article  CAS  PubMed  Google Scholar 

  46. Maron BJ, Nishimura RA, Danielson GK. Pitfalls in clinical recognition and a novel operative approach for hypertrophic cardiomyopathy with severe outflow obstruction due to anomalous papillary muscle. Circulation. 1998;98(23):2505–8.

    Article  CAS  PubMed  Google Scholar 

  47. Sherrid MV, Balaram S, Kim B, Axel L, Swistel DG. The mitral valve in obstructive hypertrophic cardiomyopathy: a test in context. J Am Coll Cardiol. 2016;67(15):1846–58.

    Article  PubMed  Google Scholar 

  48. Klues HG, Roberts WC, Maron BJ. Anomalous insertion of papillary muscle directly into anterior mitral leaflet in hypertrophic cardiomyopathy. Significance in producing left ventricular outflow obstruction. Circulation. 1991;84(3):1188–97.

    Article  CAS  PubMed  Google Scholar 

  49. Sherrid MV, Gunsburg DZ, Moldenhauer S, Pearle G. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2000;36(4):1344–54.

    Article  CAS  PubMed  Google Scholar 

  50. Hedstrom E, Bloch KM, Bergvall E, Stahlberg F, Arheden H. Effects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:70.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(3):415–22.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, et al. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international T1 multicenter cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2015;8(12):e003285.

    Article  PubMed  Google Scholar 

  54. Gruner C, Chan RH, Crean A, Rakowski H, Rowin EJ, Care M, et al. Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur Heart J. 2014;35(39):2706–13.

    Article  PubMed  Google Scholar 

  55. Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(4):441–7.

    Article  PubMed  Google Scholar 

  56. Maron BJ, Haas TS, Maron MS, Lesser JR, Browning JA, Chan RH, et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance. Am J Cardiol. 2014;113(8):1394–400.

    Article  PubMed  Google Scholar 

  57. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303.

    Article  PubMed  Google Scholar 

  58. Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 2006;114(21):2232–9.

    Article  PubMed  Google Scholar 

  59. Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging. 2010;31(3):711–8.

    Article  PubMed  Google Scholar 

  60. Macgowan CK, Kellenberger CJ, Detsky JS, Roman K, Yoo SJ. Real-time Fourier velocity encoding: an in vivo evaluation. J Magn Reson Imaging. 2005;21(3):297–304.

    Article  PubMed  Google Scholar 

  61. O'Brien KR, Myerson SG, Cowan BR, Young AA, Robson MD. Phase contrast ultrashort TE: a more reliable technique for measurement of high-velocity turbulent stenotic jets. Magn Reson Med. 2009;62(3):626–36.

    Article  PubMed  Google Scholar 

  62. Krombach GA, Kuhl H, Bucker A, Mahnken AH, Spuntrup E, Lipke C, et al. Cine MR imaging of heart valve dysfunction with segmented true fast imaging with steady state free precession. J Magn Reson Imaging. 2004;19(1):59–67.

    Article  PubMed  Google Scholar 

  63. Desai MY, Ommen SR, McKenna WJ, Lever HM, Elliott PM. Imaging phenotype versus genotype in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2011;4(2):156–68.

    Article  PubMed  Google Scholar 

  64. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35.

    Article  CAS  PubMed  Google Scholar 

  65. Kitamura M, Shimizu M, Ino H, Okeie K, Yamaguchi M, Funjno N, et al. Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type III and VI collagens. Clin Cardiol. 2001;24(4):325–9.

    Article  CAS  PubMed  Google Scholar 

  66. Harrigan CJ, Peters DC, Gibson CM, Maron BJ, Manning WJ, Maron MS, et al. Hypertrophic cardiomyopathy: quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging. Radiology. 2011;258(1):128–33.

    Article  PubMed  Google Scholar 

  67. Amano Y, Takayama M, Takahama K, Kumazaki T. Delayed hyper-enhancement of myocardium in hypertrophic cardiomyopathy with asymmetrical septal hypertrophy: comparison with global and regional cardiac MR imaging appearances. J Magn Reson Imaging. 2004;20(4):595–600.

    Article  PubMed  Google Scholar 

  68. Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41(9):1561–7.

    Article  PubMed  Google Scholar 

  69. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40(12):2156–64.

    Article  PubMed  Google Scholar 

  70. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(25):e212–60.

    Article  CAS  PubMed  Google Scholar 

  71. Rubinshtein R, Glockner JF, Ommen SR, Araoz PA, Ackerman MJ, Sorajja P, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(1):51–8.

    Article  PubMed  Google Scholar 

  72. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95.

    Article  PubMed  Google Scholar 

  73. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc Imaging. 2016;9(12):1392–402.

    Article  PubMed  Google Scholar 

  74. Rudolph A, Abdel-Aty H, Bohl S, Boye P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53(3):284–91.

    Article  PubMed  Google Scholar 

  75. Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol. 2010;56(4):278–87.

    Article  PubMed  Google Scholar 

  76. Petersen SE, Selvanayagam JB, Francis JM, Myerson SG, Wiesmann F, Robson MD, et al. Differentiation of athlete's heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2005;7(3):551–8.

    Article  PubMed  Google Scholar 

  77. Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, et al. Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll Cardiol. 2016;68(20):2157–65.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Caruthers SD, Lin SJ, Brown P, Watkins MP, Williams TA, Lehr KA, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108(18):2236–43.

    Article  PubMed  Google Scholar 

  79. Oliver JM, Gonzalez A, Gallego P, Sanchez-Recalde A, Benito F, Mesa JM. Discrete subaortic stenosis in adults: increased prevalence and slow rate of progression of the obstruction and aortic regurgitation. J Am Coll Cardiol. 2001;38(3):835–42.

    Article  CAS  PubMed  Google Scholar 

  80. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2(12):1369–77.

    Article  PubMed  Google Scholar 

  81. Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111(2):186–93.

    Article  PubMed  Google Scholar 

  82. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, Gorgels AP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45(10):1683–90.

    Article  PubMed  Google Scholar 

  83. Deva DP, Hanneman K, Li Q, Ng MY, Wasim S, Morel C, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease. J Cardiovasc Magn Reson. 2016;18:14.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Puvaneswary M, Joshua F, Ratnarajah S. Idiopathic hypereosinophilic syndrome: magnetic resonance imaging findings in endomyocardial fibrosis. Australas Radiol. 2001;45(4):524–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario J. Garcia .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    The manipulation of which of the following particles is responsible for MRI technology?

    1. A.

      Electrons

    2. B.

      Protons

    3. C.

      Neutrons

    4. D.

      X-rays

    5. E.

      Magnets

  • The correct answer is B. In magnetic resonance imaging, protons (in the form of hydrogen atoms contained in water) are aligned by application of a strong magnetic field. The energy emitted by the aligned protons is measured and used to generate MRI images.

  1. 2.

    Cardiac MR is superior to echocardiography at all of the following except:

    1. A.

      Measurement of left ventricular outflow tract gradients

    2. B.

      Ventricular volume measurement

    3. C.

      Detection of myocardial crypts

    4. D.

      Diagnosis of apical variant hypertrophic cardiomyopathy

    5. E.

      Evaluation of fibrosis

  • The correct answer is A. CMR is superior to echocardiography at measuring atrial and ventricular volumes and identifying LV wall thickness, segments of hypertrophy, as well as associated features, such as myocardial crypts. Late gadolinium enhancement enables identification and quantification of myocardial fibrosis. Echocardiography is superior to CMR at measuring LVOT gradients.

  1. 3.

    The most dangerous adverse reaction of gadolinium contrast media is

    1. A.

      Contrast-induced nephropathy

    2. B.

      Angioedema

    3. C.

      Ototoxicity

    4. D.

      Nephrogenic systemic fibrosis

    5. E.

      Osteoporosis

  • The correct answer is D. Nephrogenic systemic fibrosis is a dreaded complication of gadolinium contrast media and has only been seen in individuals with decreased glomerular filtration rate. While contrast-induced nephropathy is an adverse reaction to iodinated contrast radiocontrast media, it is not seen after administration of gadolinium contrast agents.

  1. 4.

    Which of the following is an absolute contraindication to cardiac MRI?

    1. A.

      Implantable cardioverter defibrillator

    2. B.

      Claustrophobia

    3. C.

      End-stage renal disease

    4. D.

      Pregnancy

    5. E.

      None of the above

  • The correct answer is E. Safe MRI imaging is possible in all of the above scenarios, provided that safety precautions are taken. MRI-conditional implantable cardioverter defibrillators are on the market, but devices that have been implanted after the year 2001 have been shown to be safe when following a dedicated protocol involving reprograming of the device and careful monitoring by skilled personnel. Claustrophobia is considered a relative contraindication, and end-stage renal disease is not a contraindication for MRI, unless gadolinium contrast media is used. Pregnancy is not a contraindication to non-contrast MRI imaging, though administration of gadolinium contrast agents should be avoided given the risk of teratogenicity.

  1. 5.

    Delayed enhancement sequences are obtained ___ min after administration of gadolinium contrast media.

    1. A.

      1–3

    2. B.

      5–10

    3. C.

      10–20

    4. D.

      20–30

    5. E.

      45

  • The correct answer is C. First-pass perfusion images are obtained immediately following injection of gadolinium contrast agents, though delayed enhancement sequences are taken 10–20 min after injection.

  1. 6.

    Which of the following answers is correct?

    1. A.

      Late gadolinium enhancement extent >15% of LV mass is associated with a twofold increase in sudden cardiac death in patients with HCM.

    2. B.

      Late gadolinium enhancement is associated with fourfold increase in dynamic LVOT gradients.

    3. C.

      There is no linear relationship of LGE extent and sudden cardiac death.

    4. D.

      Absence of LGE confers a worse prognosis.

  • The correct answer is A. There is a linear relationship between late gadolinium enhancement extent and sudden cardiac death risk. More specifically, LGE extent >15% of LV mass is associated with twofold increase in sudden cardiac death in patients with HCM. LGE extent is not associated with LVOT gradients.

  1. 7.

    CMR can help distinguish HCM from the following phenocopies, except:

    1. A.

      Anderson-Fabry disease

    2. B.

      Hypereosinophilic syndrome

    3. C.

      Hypertensive heart disease

    4. D.

      Left ventricular noncompaction cardiomyopathy

    5. E.

      None of the above

  • The correct answer is E. All of the above mimickers of HCM can be distinguished on CMR. Anderson-Fabry disease typically exhibits LGE in the basal inferolateral wall. Hypereosinophilic syndrome is characterized by diffuse subendocardial LGE and LV apical thrombus. In hypertensive heart disease, the LV wall thickness usually does not exceed 15 mm. Left ventricular noncompaction cardiomyopathy presents with an abnormally thick layer of noncompacted myocardium.

  1. 8.

    Which of the following findings on CMR is associated with increased risk of sudden cardiac death?

    1. A.

      Myocardial crypt

    2. B.

      Accessory apical-basal muscle bundle

    3. C.

      Accessory papillary muscle

    4. D.

      Apical aneurysm

    5. E.

      Apical-variant HCM

  • The correct answer is D. Apical aneurysm is a high-risk feature and has been found to be associated with increased risk of sudden cardiac death. All other findings are not currently known to be associated with an increased risk of sudden cardiac death.

  1. 9.

    In HCM, abnormal papillary morphology can cause systolic anterior motion of the mitral valve and left ventricular outflow tract obstruction in the presence of normal septal wall thickness.

    1. A.

      True

    2. B.

      False

  • The correct answer is A. Abnormal positioning of a papillary muscle, e.g., anteroapical displacement, can lead to systolic anterior motion of the mitral valve and left ventricular outflow tract obstruction, even when septal wall thickness is normal or only mildly increased.

  1. 10.

    CMR is recommended in all patients with HCM by current guidelines.

    1. A.

      True

    2. B.

      False

  • The correct answer is B. Current guidelines do not recommend CMR in all patients. However, CMR can provide additional information by better characterizing morphology and pattern of LV hypertrophy, mitral valve and subvalvular anatomy, associated pathologies, presence and extent of myocardial fibrosis, and distinguish between other causes of myocardial hypertrophy.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massera, D., Kahan, J., Gaztanaga, J., Garcia, M.J. (2019). Cardiac MRI in Diagnosis and Management. In: Naidu, S. (eds) Hypertrophic Cardiomyopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-92423-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92423-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92422-9

  • Online ISBN: 978-3-319-92423-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics