Skip to main content

Diagnosing and Managing Pulmonary and Right-Sided Heart Disease: Pulmonary Hypertension, Right Ventricular Outflow Pathology, and Sleep Apnea

  • Chapter
  • First Online:
  • 1364 Accesses

Abstract

The past two decades have seen a surge in the available data on hypertrophic cardiomyopathy (HCM), with evolution of comprehensive HCM-related management strategies that have expanded the diagnostic tools and risk stratification algorithms. In addition to employing genotype-to-phenotype nosology to describe HCM, modifications to the current MOGE(S) classification for HCM based on the presence or absence of obstruction and location of hypertrophy within the morphology have been suggested. These available tools, including genetic testing, have led to a greater appreciation for at-risk patients, including susceptible family cohorts. Greater recognition is being paid to the development of pulmonary hypertension in HCM, based primarily on pathophysiology related to heart failure with preserved ejection fraction. In addition, there has been resurgence in the description and recognition of right ventricular outflow pathology in HCM and its associated treatment dilemma. Although slow, a trend to recognize HCM as a treatable disease with a more favorable prognosis is emerging as the sudden death risk stratification process continues to be honed with putative additions of such risk markers as obstructive sleep apnea. This chapter will focus on our current understanding of right-sided heart pathology in HCM, including an expanded debate on sleep apnea as a risk factor for sudden death and intractable symptomatology. The unique mechanistic considerations thereof will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.

    Article  CAS  PubMed  Google Scholar 

  2. Maron BJ, McKenna WJ, Danielson GK, et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation task force on clinical expert consensus documents and the European Society of Cardiology Committee for practice guidelines. J Am Coll Cardiol. 2003;42(9):1687–713.

    Article  PubMed  Google Scholar 

  3. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.

    Article  PubMed  Google Scholar 

  4. Maron BJ. Hypertrophic cardiomyopathy. Lancet. 1997;350(9071):127–33.

    Article  CAS  PubMed  Google Scholar 

  5. Maron BJ, Casey SA, Poliac LC, et al. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA. 1999;281(7):650–5.

    Article  CAS  PubMed  Google Scholar 

  6. Fay WP, Taliercio CP, Ilstrup DM, et al. Natural history of hypertrophic cardiomyopathy in the elderly. J Am Coll Cardiol. 1990;16(4):821–6.

    Article  CAS  PubMed  Google Scholar 

  7. Maron BJ, Casey SA, Hauser RG, et al. Clinical course of hypertrophic cardiomyopathy with survival to advanced age. J Am Coll Cardiol. 2003;42(5):882–8.

    Article  PubMed  Google Scholar 

  8. Takagi E, Yamakado T, Nakano T. Prognosis of completely asymptomatic adult patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999;33(1):206–11.

    Article  CAS  PubMed  Google Scholar 

  9. Olivotto I, Cecchi F, Casey SA, et al. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001;104(21):2517–24.

    Article  CAS  PubMed  Google Scholar 

  10. Maron BJ, Olivotto I, Bellone P, et al. Clinical profile of stroke in 900 patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39(2):301–7.

    Article  PubMed  Google Scholar 

  11. Cecchi F, Olivotto I, Montereggi A, et al. Hypertrophic cardiomyopathy in Tuscany: clinical course and outcome in an unselected regional population. J Am Coll Cardiol. 1995;26(6):1529–36.

    Article  CAS  PubMed  Google Scholar 

  12. Robinson K, Frenneaux MP, Stockins B, et al. Atrial fibrillation in hypertrophic cardiomyopathy: a longitudinal study. J Am Coll Cardiol. 1990;15(6):1279–85.

    Article  CAS  PubMed  Google Scholar 

  13. Spirito P, Lakatos E, Maron BJ. Degree of left ventricular hypertrophy in patients with hypertrophic cardiomyopathy and chronic atrial fibrillation. Am J Cardiol. 1992;69(14):1217–22.

    Article  CAS  PubMed  Google Scholar 

  14. Lee CH, Liu PY, Lin LJ, et al. Clinical characteristics and outcomes of hypertrophic cardiomyopathy in Taiwan--a tertiary center experience. Clin Cardiol. 2007;30(4):177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Higashikawa M, Nakamura Y, Yoshida M, et al. Incidence of ischemic strokes in hypertrophic cardiomyopathy is markedly increased if complicated by atrial fibrillation. Jpn Circ J. 1997;61(8):673–81.

    Article  CAS  PubMed  Google Scholar 

  16. Nishimura RA, Ommen SR. Hypertrophic cardiomyopathy: the search for obstruction. Circulation. 2006;114(21):2200–2.

    Article  PubMed  Google Scholar 

  17. Abramson SV, Burke JF, Kelly JJ Jr, et al. Pulmonary hypertension predicts mortality and morbidity in patients with dilated cardiomyopathy. Ann Intern Med. 1992;116(11):888–95.

    Article  CAS  PubMed  Google Scholar 

  18. Barbieri A, Bursi F, Grigioni F, et al. Prognostic and therapeutic implications of pulmonary hypertension complicating degenerative mitral regurgitation due to flail leaflet: a multicenter long-term international study. Eur Heart J. 2011;32(6):751–9.

    Article  PubMed  Google Scholar 

  19. Bursi F, McNallan SM, Redfield MM, et al. Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol. 2012;59(3):222–31.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guazzi M, Arena R. Pulmonary hypertension with left-sided heart disease. Nat Rev Cardiol. 2010;7(11):648–59.

    Article  PubMed  Google Scholar 

  21. Lam CS, Roger VL, Rodeheffer RJ, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malouf JF, Enriquez-Sarano M, Pellikka PA, et al. Severe pulmonary hypertension in patients with severe aortic valve stenosis: clinical profile and prognostic implications. J Am Coll Cardiol. 2002;40(4):789–95.

    Article  PubMed  Google Scholar 

  23. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33.

    Article  PubMed  Google Scholar 

  24. Finocchiaro G, Knowles JW, Pavlovic A, et al. Prevalence and clinical correlates of right ventricular dysfunction in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2014;113(2):361–7.

    Article  PubMed  Google Scholar 

  25. Geske JB, Konecny T, Ommen SR, et al. Surgical myectomy improves pulmonary hypertension in obstructive hypertrophic cardiomyopathy. Eur Heart J. 2014;35(30):2032–9.

    Article  PubMed  Google Scholar 

  26. Ong KC, Geske JB, Hebl VB, et al. Pulmonary hypertension is associated with worse survival in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17(6):604–10.

    Article  PubMed  Google Scholar 

  27. Musumeci MB, Mastromarino V, Casenghi M, et al. Pulmonary hypertension and clinical correlates in hypertrophic cardiomyopathy. Int J Cardiol. 2017;248:326–32.

    Article  PubMed  Google Scholar 

  28. Covella M, Rowin EJ, Hill NS, et al. Mechanism of progressive heart failure and significance of pulmonary hypertension in obstructive hypertrophic cardiomyopathy. Circ Heart Fail. 2017;10(4):e003689.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maron BA, Galie N. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: a review. JAMA Cardiol. 2016;1(9):1056–65.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation task force on expert consensus documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.

    Article  PubMed  Google Scholar 

  31. Spirito P, Ferrazzi P. Pulmonary hypertension in hypertrophic cardiomyopathy: a forgotten marker in the identification of candidates to surgical myectomy? Eur Heart J Cardiovasc Imaging. 2016;17(6):611–2.

    Article  PubMed  Google Scholar 

  32. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119.

    Article  PubMed  Google Scholar 

  33. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.

    Article  PubMed  Google Scholar 

  34. McKenna WJ, Kleinebenne A, Nihoyannopoulos P, et al. Echocardiographic measurement of right ventricular wall thickness in hypertrophic cardiomyopathy: relation to clinical and prognostic features. J Am Coll Cardiol. 1988;11(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor RR, Bernstein L, Jose AD. Obstructive phenomena in ventricular hypertrophy. Br Heart J. 1964;26:193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maron BJ, McIntosh CL, Klues HG, et al. Morphologic basis for obstruction to right ventricular outflow in hypertrophic cardiomyopathy. Am J Cardiol. 1993;71(12):1089–94.

    Article  CAS  PubMed  Google Scholar 

  37. Botti G, Tagliavini S, Bonatti V, et al. Isolated hypertrophic obstructive cardiomyopathy of the right ventricle. G Ital Cardiol. 1979;9(2):170–81.

    CAS  PubMed  Google Scholar 

  38. Falcone DM, Moore D, Lambert EC. Idiopathic hypertrophic cardiomyopathy involving the right ventricle. Am J Cardiol. 1967;19(5):735–40.

    Article  CAS  PubMed  Google Scholar 

  39. Lockhart A, Charpentier A, Bourdarias JP, et al. Right ventricular involvement in obstructive cardiomyopathies: haemodynamic studies in 13 cases. Br Heart J. 1966;28(1):122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrow AG, Fisher RD, Fogarty TJ. Isolated hypertrophic obstruction to right ventricular outflow. Clinical, hemodynamic, and angiographic findings before and after operative treatment. Am Heart J. 1969;77(6):814–7.

    Article  CAS  PubMed  Google Scholar 

  41. Barr PA, Celermajer JM, Bowdler JD, et al. Idiopathic hypertrophic obstructive cardiomyopathy causing severe right ventricular outflow tract obstruction in infancy. Br Heart J. 1973;35(11):1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casanova M, Gamallo C, Quero-Jimenez M, et al. Familial hypertrophic cardiomyopathy with unusual involvement of the right ventricle. Eur J Cardiol. 1979;9(2):145–59.

    CAS  PubMed  Google Scholar 

  43. Maron BJ, Tajik AJ, Ruttenberg HD, et al. Hypertrophic cardiomyopathy in infants: clinical features and natural history. Circulation. 1982;65(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  44. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maron MS, Hauser TH, Dubrow E, et al. Right ventricular involvement in hypertrophic cardiomyopathy. Am J Cardiol. 2007;100(8):1293–8.

    Article  PubMed  Google Scholar 

  46. Hirapur I, Kolhari VB, Agrawal N, et al. Significant biventricular obstruction in non-syndromic hypertrophic cardiomyopathy. BMJ Case Rep. 2014;2014:bcr2014206271.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frank S, Braunwald E. Idiopathic hypertrophic subaortic stenosis. Clinical analysis of 126 patients with emphasis on the natural history. Circulation. 1968;37(5):759–88.

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu M, Kawai H, Yokota Y, et al. Echocardiographic assessment of right ventricular obstruction in hypertrophic cardiomyopathy. Circ J. 2003;67(10):855–60.

    Article  PubMed  Google Scholar 

  49. Borisov KV. Right ventricle myectomy. Ann Cardiothorac Surg. 2017;6(4):402–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Borisov KV. Surgical correction of hypertrophic obstructive cardiomyopathy in patients with simultaneous obstruction of left ventricular midcavity and right ventricular outflow tract. Eur J Cardiothorac Surg. 2013;43(1):67–72.

    Article  PubMed  Google Scholar 

  51. Quintana E, Johnson JN, Sabate Rotes A, et al. Surgery for biventricular obstruction in hypertrophic cardiomyopathy in children and young adults: technique and outcomes. Eur J Cardiothorac Surg. 2015;47(6):1006–12.

    Article  PubMed  Google Scholar 

  52. Borisov KV. Surgical correction of hypertrophic obstructive cardiomyopathy in a patient with severe hypertrophy and septal myocardial fibrosis. Interact Cardiovasc Thorac Surg. 2012;15(4):769–71.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep. (1999);22(5):667–89.

    Google Scholar 

  54. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165(9):1217–39.

    Article  PubMed  Google Scholar 

  55. Cloward TV, Walker JM, Farney RJ, et al. Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure. Chest. 2003;124(2):594–601.

    Article  PubMed  Google Scholar 

  56. Maron BJ. The 2009 international hypertrophic cardiomyopathy summit. Am J Cardiol. 2010;105(8):1164–8.

    Article  PubMed  Google Scholar 

  57. Hansel B, Cohen-Aubart F, Dourmap C, et al. Prevalence of sleep apnea in men with metabolic syndrome and controlled hypertension. Arch Mal Coeur Vaiss. 2007;100(8):637–41.

    CAS  PubMed  Google Scholar 

  58. Drager LF, Lopes HF, Maki-Nunes C, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One. 2010;5(8):e12065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Leung RS, Bradley TD. Sleep apnea and cardiovascular disease. Am J Respir Crit Care Med. 2001;164(12):2147–65.

    Article  CAS  PubMed  Google Scholar 

  60. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118(10):1080–111.

    Article  PubMed  Google Scholar 

  61. Drager LF, Genta PR, Pedrosa RP, et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010;105(8):1135–9.

    Article  PubMed  Google Scholar 

  62. Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84.

    Article  CAS  PubMed  Google Scholar 

  63. Logan AG, Perlikowski SM, Mente A, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001;19(12):2271–7.

    Article  CAS  PubMed  Google Scholar 

  64. Gami AS, Pressman G, Caples SM, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004;110(4):364–7.

    Article  PubMed  Google Scholar 

  65. Severino S, Caso P, Cicala S, et al. Involvement of right ventricle in left ventricular hypertrophic cardiomyopathy: analysis by pulsed Doppler tissue imaging. Eur J Echocardiogr. 2000;1(4):281–8.

    Article  CAS  PubMed  Google Scholar 

  66. Nerbass FB, Pedrosa RP, Danzi-Soares NJ, et al. Obstructive sleep apnea and hypertrophic cardiomyopathy: a common and potential harmful combination. Sleep Med Rev. 2013;17(3):201–6.

    Article  PubMed  Google Scholar 

  67. Banno K, Shiomi T, Sasanabe R, et al. Sleep-disordered breathing in patients with idiopathic cardiomyopathy. Circ J. 2004;68(4):338–42.

    Article  PubMed  Google Scholar 

  68. Eleid MF, Konecny T, Orban M, et al. High prevalence of abnormal nocturnal oximetry in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(19):1805–9.

    Article  PubMed  Google Scholar 

  69. Sengupta PP, Sorajja D, Eleid MF, et al. Hypertrophic obstructive cardiomyopathy and sleep-disordered breathing: an unfavorable combination. Nat Clin Pract Cardiovasc Med. 2009;6(1):14–5.

    Article  PubMed  Google Scholar 

  70. Jan MF, Tajik AJ. Obstructive sleep apnea and hypertrophic cardiomyopathy: obiter dictum or more? J Am Coll Cardiol. 2014;64(23):2560–2.

    Article  PubMed  Google Scholar 

  71. Pedrosa RP, Drager LF, Genta PR, et al. Obstructive sleep apnea is common and independently associated with atrial fibrillation in patients with hypertrophic cardiomyopathy. Chest. 2010;137(5):1078–84.

    Article  PubMed  Google Scholar 

  72. Konecny T, Brady PA, Orban M, et al. Interactions between sleep disordered breathing and atrial fibrillation in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2010;105(11):1597–602.

    Article  PubMed  Google Scholar 

  73. Prinz C, Bitter T, Oldenburg O, et al. Incidence of sleep-disordered breathing in patients with hypertrophic cardiomyopathy. Congest Heart Fail. 2011;17(1):19–24.

    Article  PubMed  Google Scholar 

  74. Pedrosa RP, Lima SG, Drager LF, et al. Sleep quality and quality of life in patients with hypertrophic cardiomyopathy. Cardiology. 2010;117(3):200–6.

    Article  PubMed  Google Scholar 

  75. Elias RM, Castro MC, de Queiroz EL, et al. Obstructive sleep apnea in patients on conventional and short daily hemodialysis. Am J Nephrol. 2009;29(6):493–500.

    Article  PubMed  Google Scholar 

  76. Sin DD, Fitzgerald F, Parker JD, et al. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med. 1999;160(4):1101–6.

    Article  CAS  PubMed  Google Scholar 

  77. Chiu KL, Ryan CM, Shiota S, et al. Fluid shift by lower body positive pressure increases pharyngeal resistance in healthy subjects. Am J Respir Crit Care Med. 2006;174(12):1378–83.

    Article  PubMed  Google Scholar 

  78. Yumino D, Redolfi S, Ruttanaumpawan P, et al. Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation. 2010;121(14):1598–605.

    Article  PubMed  Google Scholar 

  79. Elias RM, Bradley TD, Kasai T, et al. Rostral overnight fluid shift in end-stage renal disease: relationship with obstructive sleep apnea. Nephrol Dial Transplant. 2012;27(4):1569–73.

    Article  PubMed  Google Scholar 

  80. Redolfi S, Yumino D, Ruttanaumpawan P, et al. Relationship between overnight rostral fluid shift and obstructive sleep apnea in nonobese men. Am J Respir Crit Care Med. 2009;179(3):241–6.

    Article  PubMed  Google Scholar 

  81. Nerbass FB, Pedrosa RP, Genta PR, et al. Lack of reliable clinical predictors to identify obstructive sleep apnea in patients with hypertrophic cardiomyopathy. Clinics (Sao Paulo). 2013;68(7):992–6.

    Article  Google Scholar 

  82. Greaves SC, Roche AH, Neutze JM, et al. Inheritance of hypertrophic cardiomyopathy: a cross sectional and M mode echocardiographic study of 50 families. Br Heart J. 1987;58(3):259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Millat G, Bouvagnet P, Chevalier P, et al. Prevalence and spectrum of mutations in a cohort of 192 unrelated patients with hypertrophic cardiomyopathy. Eur J Med Genet. 2010;53(5):261–7.

    Article  PubMed  Google Scholar 

  84. Kaski JP, Syrris P, Esteban MT, et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet. 2009;2(5):436–41.

    Article  CAS  PubMed  Google Scholar 

  85. Erdmann J, Daehmlow S, Wischke S, et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003;64(4):339–49.

    Article  CAS  PubMed  Google Scholar 

  86. Richard P, Charron P, Carrier L, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–32.

    Article  PubMed  Google Scholar 

  87. Jan MF, Tajik AJ. Hypertrophic cardiomyopathy. In: Chatterjee K, Anderson M, Heistad D, et al., editors. Cardiology: an illustrated textbook. New Dehli, India: Jaypee Brothers Medical Publishers; 2017. p. 1377–423.

    Google Scholar 

  88. Shuk-kuen Chau C, Kwok KL, Ng DK, et al. Maternally inherited Leigh syndrome: an unusual cause of infantile apnea. Sleep Breath. 2010;14(2):161–5.

    Article  PubMed  Google Scholar 

  89. Sakaue S, Ohmuro J, Mishina T, et al. A case of diabetes, deafness, cardiomyopathy, and central sleep apnea: novel mitochondrial DNA polymorphisms. Tohoku J Exp Med. 2002;196(3):203–11.

    Article  PubMed  Google Scholar 

  90. Aggarwal S, Jan MF, Agarwal A, et al. Hypertrophic cardiomyopathy associated with sleep apnea: serious implications and cogent management strategy. Expert Rev Cardiovasc Ther. 2015;13(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  91. Drager LF, Bortolotto LA, Figueiredo AC, et al. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2007;176(7):706–12.

    Article  CAS  PubMed  Google Scholar 

  92. Shivalkar B, Van de Heyning C, Kerremans M, et al. Obstructive sleep apnea syndrome: more insights on structural and functional cardiac alterations, and the effects of treatment with continuous positive airway pressure. J Am Coll Cardiol. 2006;47(7):1433–9.

    Article  PubMed  Google Scholar 

  93. Usui K, Parker JD, Newton GE, et al. Left ventricular structural adaptations to obstructive sleep apnea in dilated cardiomyopathy. Am J Respir Crit Care Med. 2006;173(10):1170–5.

    Article  PubMed  Google Scholar 

  94. Dursunoglu N, Dursunoglu D, Ozkurt S, et al. Effects of CPAP on left ventricular structure and myocardial performance index in male patients with obstructive sleep apnoea. Sleep Med. 2007;8(1):51–9.

    Article  PubMed  Google Scholar 

  95. Phillips BG, Kato M, Narkiewicz K, et al. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2000;279(1):H234–7.

    Article  CAS  PubMed  Google Scholar 

  96. Phipps PR, Starritt E, Caterson I, et al. Association of serum leptin with hypoventilation in human obesity. Thorax. 2002;57(1):75–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jain R, Osranek M, Jan MF, et al. Marked respiratory-related fluctuations in left ventricular outflow tract gradients in hypertrophic obstructive cardiomyopathy: an observational study. Eur Heart J Cardiovasc Imaging. 2017;7:2017 [Epub ahead of print]. https://doi.org/10.1093/ehjci/jex215.

    Article  Google Scholar 

  98. Wigle ED, David PR, Labroose CJ, et al. Muscular subaortic stenosis; the interrelation of wall tension, outflow tract "distending pressure" and orifice radius. Am J Cardiol. 1965;15:761–72.

    Article  CAS  PubMed  Google Scholar 

  99. Buda AJ, Pinsky MR, Ingels NB Jr, et al. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301(9):453–9.

    Article  CAS  PubMed  Google Scholar 

  100. Summer WR, Permutt S, Sagawa K, et al. Effects of spontaneous respiration on canine left ventricular function. Circ Res. 1979;45(6):719–28.

    Article  CAS  PubMed  Google Scholar 

  101. Tyson GS Jr, Maier GW, Olsen CO, et al. Pericardial influences on ventricular filling in the conscious dog. An analysis based on pericardial pressure. Circ Res. 1984;54(2):173–84.

    Article  PubMed  Google Scholar 

  102. Konecny T, Covassin N, Park JY, et al. Increased heart rate with sleep disordered breathing in hypertrophic cardiomyopathy (Abstract). Heart Rhythm. 2013;10(5 (Suppl)):S456–7.

    Google Scholar 

  103. Konecny T, Brady PA, Ludka O, et al. Sleep disordered breathing is associated with higher heart rates in patients with hypertrophic cardiomyopathy despite rate control therapy (abstract). Circulation. 2011;124(Supplement 1):A13038.

    Google Scholar 

  104. Konecny T, Covassin N, Park JY, et al. RR interval changes during obstructive sleep apnea episodes in hypertrophic cardiomyopathy (abstract). Europace. 2013;15(Suppl 2):S211.

    Google Scholar 

  105. Konecny T, Brady P, Ludka O, et al. Mechanisms of decreased exercise capacity with sleep disordered breathing in hypertrophic cardiomyopathy (Abstract). Circulation. 2012;126(21(Suppl)):A12705.

    Google Scholar 

  106. Prinz C, Oldenburg O, Bitter T, et al. Echocardiographic evaluation of disease severity in patients with hypertrophic obstructive cardiomyopathy and concomitant sleep apnea (abstract). Eur J Echocardiogr Supplements. 2010;11(Suppl 2):S21.

    Google Scholar 

  107. Wilcox I, Semsarian C. Obstructive sleep apnea a respiratory syndrome with protean cardiovascular manifestations. J Am Coll Cardiol. 2009;54(19):1810–2.

    Article  PubMed  Google Scholar 

  108. Shimada YJ, Sato K, Hanon S, et al. Termination of recurrent ventricular tachycardia by continuous positive airway pressure ventilation. Ann Noninvasive Electrocardiol. 2009;14(4):404–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Al-Saleh S, Kantor PF, Chadha NK, et al. Sleep-disordered breathing in children with cardiomyopathy. Ann Am Thorac Soc. 2014;11(5):770–6.

    Article  PubMed  Google Scholar 

  110. Madbouly EM, Nadeem R, Nida M, et al. The role of severity of obstructive sleep apnea measured by apnea-hypopnea index in predicting compliance with pressure therapy, a meta-analysis. Am J Ther. 2014;21(4):260–4.

    Article  PubMed  Google Scholar 

  111. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995;26(7):1699–708.

    Article  CAS  PubMed  Google Scholar 

  112. Maron BJ, Spirito P. Impact of patient selection biases on the perception of hypertrophic cardiomyopathy and its natural history. Am J Cardiol. 1993;72(12):970–2.

    Article  CAS  PubMed  Google Scholar 

  113. Maron BJ, Bonow RO, Cannon RO 3rd, et al. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (2). N Engl J Med. 1987;316(14):844–52.

    Article  CAS  PubMed  Google Scholar 

  114. Maron BJ, Peterson EE, Maron MS, et al. Prevalence of hypertrophic cardiomyopathy in an outpatient population referred for echocardiographic study. Am J Cardiol. 1994;73(8):577–80.

    Article  CAS  PubMed  Google Scholar 

  115. Elliott PM, Gimeno Blanes JR, Mahon NG, et al. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet. 2001;357(9254):420–4.

    Article  CAS  PubMed  Google Scholar 

  116. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000;36(7):2212–8.

    Article  CAS  PubMed  Google Scholar 

  117. Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J. 2001;22(16):1374–450.

    Article  CAS  PubMed  Google Scholar 

  118. Spirito P, Seidman CE, McKenna WJ, et al. The management of hypertrophic cardiomyopathy. N Engl J Med. 1997;336(11):775–85.

    Article  CAS  PubMed  Google Scholar 

  119. McKenna WJ, England D, Doi YL, et al. Arrhythmia in hypertrophic cardiomyopathy. I: influence on prognosis. Br Heart J. 1981;46(2):168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spirito P, Bellone P, Harris KM, et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2000;342(24):1778–85.

    Article  CAS  PubMed  Google Scholar 

  121. Spirito P, Maron BJ. Relation between extent of left ventricular hypertrophy and occurrence of sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1990;15(7):1521–6.

    Article  CAS  PubMed  Google Scholar 

  122. Maron BJ, Shen WK, Link MS, et al. Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med. 2000;342(6):365–73.

    Article  CAS  PubMed  Google Scholar 

  123. Maron BJ, Spirito P. Implantable defibrillators and prevention of sudden death in hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2008;19(10):1118–26.

    Article  PubMed  Google Scholar 

  124. Elliott PM, Sharma S, Varnava A, et al. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999;33(6):1596–601.

    Article  CAS  PubMed  Google Scholar 

  125. Cha YM, Gersh BJ, Maron BJ, et al. Electrophysiologic manifestations of ventricular tachyarrhythmias provoking appropriate defibrillator interventions in high-risk patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2007;18(5):483–7.

    Article  PubMed  Google Scholar 

  126. Bitter T, Westerheide N, Prinz C, et al. Cheyne-stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J. 2011;32(1):61–74.

    Article  PubMed  Google Scholar 

  127. Gami AS, Olson EJ, Shen WK, et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol. 2013;62(7):610–6.

    Article  PubMed  Google Scholar 

  128. Narkiewicz K, Pesek CA, Kato M, et al. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32(6):1039–43.

    Article  CAS  PubMed  Google Scholar 

  129. La Rovere MT, Pinna GD, Hohnloser SH, et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001;103(16):2072–7.

    Article  PubMed  Google Scholar 

  130. Spirito P, Autore C, Formisano F, et al. Risk of sudden death and outcome in patients with hypertrophic cardiomyopathy with benign presentation and without risk factors. Am J Cardiol. 2014;113(9):1550–5.

    Article  PubMed  Google Scholar 

  131. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–95.

    Article  PubMed  Google Scholar 

  132. Stafford WJ, Trohman RG, Bilsker M, et al. Cardiac arrest in an adolescent with atrial fibrillation and hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;7(3):701–4.

    Article  CAS  PubMed  Google Scholar 

  133. Boriani G, Rapezzi C, Biffi M, et al. Atrial fibrillation precipitating sustained ventricular tachycardia in hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2002;13(9):954.

    Article  PubMed  Google Scholar 

  134. Benjamin EJ, Chen PS, Bild DE, et al. Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation. 2009;119(4):606–18.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mehra R, Benjamin EJ, Shahar E, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the sleep heart health study. Am J Respir Crit Care Med. 2006;173(8):910–6.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tanigawa T, Yamagishi K, Sakurai S, et al. Arterial oxygen desaturation during sleep and atrial fibrillation. Heart. 2006;92(12):1854–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Porthan KM, Melin JH, Kupila JT, et al. Prevalence of sleep apnea syndrome in lone atrial fibrillation: a case-control study. Chest. 2004;125(3):879–85.

    Article  PubMed  Google Scholar 

  138. Van Wagoner DR, Piccini JP, Albert CM, et al. Progress toward the prevention and treatment of atrial fibrillation: a summary of the Heart Rhythm Society research forum on the treatment and prevention of atrial fibrillation, Washington, DC, December 9-10, 2013. Heart Rhythm. 2015;12(1):e5–e29.

    Article  PubMed  Google Scholar 

  139. Patel D, Mohanty P, Di Biase L, et al. Safety and efficacy of pulmonary vein antral isolation in patients with obstructive sleep apnea: the impact of continuous positive airway pressure. Circ Arrhythm Electrophysiol. 2010;3(5):445–51.

    Article  PubMed  Google Scholar 

  140. Fein AS, Shvilkin A, Shah D, et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2013;62(4):300–5.

    Article  PubMed  Google Scholar 

  141. Naruse Y, Tada H, Satoh M, et al. Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: clinical impact of continuous positive airway pressure therapy. Heart Rhythm. 2013;10(3):331–7.

    Article  PubMed  Google Scholar 

  142. Ghias M, Scherlag BJ, Lu Z, et al. The role of ganglionated plexi in apnea-related atrial fibrillation. J Am Coll Cardiol. 2009;54(22):2075–83.

    Article  PubMed  Google Scholar 

  143. Linz D, Mahfoud F, Schotten U, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60(1):172–8.

    Article  CAS  PubMed  Google Scholar 

  144. Niizeki T, Takeishi Y, Takabatake N, et al. Circulating levels of heart-type fatty acid-binding protein in a general Japanese population: effects of age, gender, and physiologic characteristics. Circ J. 2007;71(9):1452–7.

    Article  CAS  PubMed  Google Scholar 

  145. Komamura K, Sasaki T, Hanatani A, et al. Heart-type fatty acid binding protein is a novel prognostic marker in patients with non-ischaemic dilated cardiomyopathy. Heart. 2006;92(5):615–8.

    Article  CAS  PubMed  Google Scholar 

  146. Renaud B, Ngako A. Heart-type fatty acid-binding proteins (H-FABP): a reliable tool for initial risk stratification of pulmonary embolism? Eur Heart J. 2007;28(2):146–7.

    Article  CAS  PubMed  Google Scholar 

  147. Akbal E, Ozbek M, Gunes F, et al. Serum heart type fatty acid binding protein levels in metabolic syndrome. Endocrine. 2009;36(3):433–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Jennifer Pfaff and Susan Nord of Aurora Cardiovascular Services, Aurora St. Luke’s Medical Center, for editorial preparation of the manuscript and Brian Miller and Brian Schurrer of Aurora Research Institute, Aurora Sinai Medical Center for assistance with the figures.

Financial Disclosures

The authors have no conflicts of interest or funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fuad Jan .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    The following are true about pulmonary hypertension (PH) in hypertrophic cardiomyopathy (HCM):

    1. A.

      Development of PH in HCM is a rare phenomenon and when it develops is primarily related to severe left ventricular outflow tract (LVOT) obstruction. Patients with PH in HCM are usually older and in their seventh decade of life and also usually have severe mitral regurgitation.

    2. B.

      PH is universal in HCM.

    3. C.

      PH in HCM is usually associated with irreversible changes in the pulmonary arterioles, and almost all patients have high pulmonary vascular resistance.

    4. D.

      PH in HCM is usually associated with syncope and is a high-risk marker for sudden death.

    5. E.

      None of the above.

  • Answer: E

  • Explanation:

  • The prevalence of PH in HCM is reported to be similar to that in conditions like aortic stenosis and heart failure with preserved ejection fraction, which share similar hemodynamic traits with HCM. PH is neither rare nor universal in HCM. The pathophysiologic basis of PH in HCM is primarily due to diastolic dysfunction resulting in elevated left ventricular (LV) pressures and left atrial hypertension. The coexistence of dynamic LVOT obstruction, diastolic dysfunction secondary to intrinsic myocardial stiffness, mitral regurgitation, and LV hypertrophy in HCM also eventually leads to the development of postcapillary PH, representing the cumulative downstream effect of the hemodynamic derangements (LVOT obstruction, mitral regurgitation, diastolic dysfunction) that cause left atrial hypertension. High pulmonary vascular resistance in PH associated with HCM is not common, and a small percentage of such patients may have elevated pulmonary vascular resistance. Currently, PH is not a high-risk marker for sudden death in HCM and is not used as a risk arbitrator for the implantation of an implantable cardioverter-defibrillator for primary prevention of sudden death.

  1. 2.

    Right ventricular (RV) hypertrophy is common in HCM and may pose management dilemmas in the routine care of patients with HCM. The following are true about RV obstructive pathology in HCM:

    1. A.

      The genetics of RV involvement in HCM has been well described in most modern reports.

    2. B.

      Reported incidence of RV obstructive pathology in HCM is miniscule and occurs in <1% of HCM patients when the interventricular septum is >18 mm thick.

    3. C.

      RV obstruction is present in up to 15% of patients with HCM.

    4. D.

      RV obstruction is only present when the interventricular septum is >35 mm in thickness.

    5. E.

      All of the above.

  • Answer: C

  • Explanation:

  • The genetics of RV involvement has not been well characterized, although histological findings appear similar to those in the LV, suggesting a similar pathogenesis. The incidence of RV obstructive pathology has been reported to vary from 15% to 92% in older cardiac catheterization studies, while more modern data on echocardiography (the current gold standard for diagnosis) document it at 15%.

  1. 3.

    RV obstruction (subpulmonic) in HCM is more commonly reported in young children and infants than adults. The site of RV obstruction is fairly easy to localize with current imaging techniques. The following are true about this phenomenon:

    1. A.

      The sites of RV obstruction may be in the outflow tract (the vast majority), the mid-base region at the level of the septal band, and the apical trabecular region.

    2. B.

      Combined RV outflow tract (RVOT) and LVOT obstruction is less common than isolated RVOT obstruction.

    3. C.

      The Doppler flow velocity profile of RV obstruction shows the typical dagger-shaped profile characteristic of LVOT obstruction due to systolic anterior motion of the tricuspid valve.

    4. D.

      Echocardiography easily localizes the region of interest of obstruction in RVOT pathology in the same way as LVOT obstruction.

    5. E.

      None of the above.

  • Answer: A

  • Explanation:

  • RV obstruction in HCM is caused by a narrowing of the ventricular cavity as a result of muscle contraction during systole together with a hypertrophied RV free wall and protruding interventricular septum. Obstruction of the RVOT in HCM has been shown to be associated with massive hypertrophy of the LV musculature, which comprises the crista supraventricularis, moderator band, or trabeculae. Combined RVOT and LVOT obstruction is more common than isolated RVOT obstruction, and triple intraventricular obstruction (RVOT, LVOT, and mid-ventricular) also is seen. Isolated RV obstruction has occasionally been described. The Doppler flow velocity profile of RV obstruction appears relatively symmetric and dome-like without the dagger-shaped profile characteristic of LVOT obstruction resulting from the dynamic obstruction caused by systolic anterior motion (SAM) of the mitral valve and SAM-septal contact. There are important caveats that need to be understood during the echocardiographic examination of patients with RVOT obstruction. A concerted effort is needed to investigate the obstructive process under Doppler echocardiography. A short-axis view of the LV that reveals a very thick septum and a crowded RV with severe muscle thickening is an early clue to investigate RVOT obstruction under Doppler.

  1. 4.

    The following are thus true about HCM and obstructive sleep apnea (OSA):

    1. A.

      Poor sleep quality may be reported in HCM, but OSA is rare.

    2. B.

      Non-sarcomeric mutations are frequent in patients with OSA and HCM.

    3. C.

      Patients with OSA and HCM usually have a syndromic association with other features such as deafness and lactic acidosis.

    4. D.

      OSA may help protect against the more severe forms of obstructive pathology in HCM.

    5. E.

      Several overlapping pathophysiologic alterations underlie the worsening of HCM symptoms in patients who have both HCM and OSA.

  • Answer: E

  • Explanation:

  • The coexistence of HCM and OSA even in patients without the traditional risk factors for OSA is suggested by recent studies, ranging from 32% to 71%, depending on the methodology and diagnostic criteria used. A large number of candidate gene studies have been performed in OSA, but to date no consistent genetic linkage for OSA has been found. Maternally inherited mutations in mitochondrial DNA have been reported in few patients with concomitant HCM and sleep-disordered breathing. Several pathophysiologic mechanisms help translate the link between these two disease states. The most likely explanation is the altered adrenergic signaling seen in OSA, which also is one of the key features of HCM. This high catecholamine state causes increased hypertrophy and LV filling pressures, decreased cardiac output, and initiation or worsening of LVOT obstruction, dyspnea, dizziness, and mitral regurgitation.

  1. 5.

    A 55-year-old man with a known history of nonobstructive HCM (diagnosed about 6 years ago), maintained on metoprolol 50 mg twice a day, sought attention for a syncopal episode while running. He does not have a history of sudden death in the family. Transthoracic echocardiography showed a septum of 20 mm in thickness. Treadmill exercise testing showed appropriate blood pressure response. A 24-hour, ambulatory electrocardiography monitor revealed short runs of atrial tachycardia but no episodes of non-sustained ventricular tachycardia. Cardiac magnetic resonance imaging revealed a < 5% area of the myocardium with delayed enhancement, and a sleep study showed evidence of severe obstructive sleep apnea-hypopnea syndrome. Which of the following would you use as a minor risk arbitrator for recommending an automatic implantable cardioverter-defibrillator (ICD) in this patient?

    1. A.

      LV wall thickness > 20 mm

    2. B.

      Genetic testing for sarcomere gene mutations

    3. C.

      Electrophysiologic testing (programmed ventricular stimulation)

    4. D.

      Sleep study

    5. E.

      None of the above

  • Answer: E

  • Explanation:

  • This is a controversial question. In contemporary practice several risk markers have emerged from observational studies and have achieved a general acceptance in risk stratification for prophylactic use of ICDs in HCM patients. These are traditionally classified as ten conventional risk factors and potential or uncertain risk factors. The conventional risk markers include:

    1. 1.

      Family history of one or more HCM-related sudden death or resuscitated sudden death

    2. 2.

      One or more episodes of unexplained syncope

    3. 3.

      LV wall thickness > 30 mm

    4. 4.

      Non-sustained ventricular tachycardia on Holter monitor

    5. 5.

      Hypotensive or attenuated blood pressure response on exercise stress testing

  • The potential and uncertain risk markers include:

  1. 1.

    Late gadolinium enhancement by cardiac magnetic resonance imaging

  2. 2.

    LV apical aneurysm

  3. 3.

    OSA

  4. 4.

    LVOT obstruction with a resting gradient >30 mmHg

  5. 5.

    Associated epicardial coronary artery disease

  6. 6.

    Atrial fibrillation

  7. 7.

    Malignant gene mutations (nonsarcomere LAMP 2 or double sarcomere mutations)

  8. 8.

    Myocardial bridging

  9. 9.

    Myocardial ischemia

  10. 10. 

    Troponin elevation

  • Sudden death is unpredictable in HCM and is the most frequent mode of premature death. Precise risk stratification in HCM remains a challenge due to its clinical heterogeneity of presentation and expression, its relatively low prevalence in general cardiology practice, and the complexity of potential pathophysiologic mechanisms. It is possible that OSA – by affecting mechanisms mediating heart rate variability, including central nervous system coupling between cardiac and ventilatory parasympathetic inputs, the arterial baroreflex, and feedback from pulmonary stretch receptors, i.e., cardiac autonomic dysfunction – can contribute to an elevated risk of sudden death in HCM. Chronic sympathetic overdrive is another mechanism that can contribute to the elevated risk of sudden cardiac death in HCM patients with OSA. These are mechanistic considerations that can stimulate the proposition of a true arrhythmogenic role of OSA in HCM in susceptible patients, but not one that has been proven yet.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuad Jan, M., Jamil Tajik, A. (2019). Diagnosing and Managing Pulmonary and Right-Sided Heart Disease: Pulmonary Hypertension, Right Ventricular Outflow Pathology, and Sleep Apnea. In: Naidu, S. (eds) Hypertrophic Cardiomyopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-92423-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92423-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92422-9

  • Online ISBN: 978-3-319-92423-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics